Biometry. Lecture 1

Alexey Shipunov

Minot State University

January 15, 2014

Outline

Course in general

- Description
- Grading
- Course schedule

2 Why do we need statistics

- What is statistics
- Data
- Samples

Outline

Course in general

- Description
- Grading
- Course schedule

2 Why do we need statistics

- What is statistics
- Data
- Samples

Course in general Description

Course description

Course will cover introductory statistic concepts in a form designed specifically for biology majors, its goal is to strengthen Biology and Chemistry students statistical knowledge and abilities. It is a practical, software-based examination of the concepts of sampling, hypotheses testing (non-parametric and parametric), descriptive statistics, contingency, correlation, analysis of variation, linear models and basic multivariate techniques. Only biological, real-world data will be used. Course will concentrate on underlying principles, applicability and practical use of methods covered. R statistical environment will be used as a main software tool.

- what is data and how to process it;
- what are statistical hypotheses;
- how to get answers from one-, two- and multidimensional data

- Dr. Alexey Shipunov
- Office: Moore 229
- Office Hours: Mondays, Wednesdays and Fridays, 10 a.m. to 11:30 a.m.
- Phone: 858-3116
- E-mail: alexey.shipunov@minotstateu.edu

Lectures Mondays and Wednesdays and Fridays, 8 a.m. to 8:50 a.m., Moore 213 Laboratories Mondays, 1 p.m. to 4 p.m., Moore 211 Textbook Shipunov A., and others. Visual statistics. Use R!. DMK Press, 2012. [In Russian]. The book will be translated in to English due course.

Course in general Grading

- Four equal exams are given during the semester.
- Only the three best exams contribute to the final grade.
- Missed exams count zero points. There are **no make-up** exams.

- Receiving zero points for **more than one** laboratory results in a failed course.
- Grading of laboratories is based on reports.
- Written reports are prepared and finished during laboratory sessions and sent via e-mail or passed to the instructor right after the particular laboratory session.
- It is expected that you have reviewed the lecture contents before you come to lab.

There are five legitimate reasons for absence from labs:

- emergency situations,
- attested medical conditions,
- Inilitary duty,
- participation in MSU sports events,
- dependent sick leave.

Absence from laboratories needs to be announced to the instructor in advance **via e-mail**. I strongly recommend attending lectures regularly. Statistically, students who achieved best grades are **always attend lectures**.

- At the end of every lecture I will give one short test question to answer.
- The question will require 1–3 min to answer and respectively, will give from 1 to 3 points (depending on the complexity).

A total of 600 points can be earned and are distributed as follows:

- Three best exams: < 60300 points</p>
- Lecture tests: < 6060 points total</p>
- Laboratory: < 60240 points (20 points per lab)

Grading points may vary between exams, tests, and labs.

Letter grades

- A > 90%
- *B* > 80%
- *C* ≥ 70%
- D ≥ 60%
- F < 60%

A minimum of one letter grade will be deducted from the grade for academic dishonesty / plagiarism.

Course in general Course schedule

Tentative course sequence

- Data and data processing
- How to process data: R basics
- Types of data
- One-dimensional data, descriptive statistics
- Contingency tables
- Correlation
- Regression
- ANOVA
- Multidimensional data, data mining

Course Web site

Shipunov (MSU)

Why do we need statistics What is statistics

Definition of Statistics

- Data Collecting any numerical data, e.g. unemployment rate per state.
- Samples Working with any subsets (samples) of data, like voting polls.
 - Tools Procedures used to analyze data, such as ANOVA or chi-square statistic.
 - Science Science that develops mathematical procedures to describe data.

In all, statistics is about data.

Why do we need statistics Data

Small data

- Small data is often self-explanatory.
- Experiments with cognition show that it is easy to operate with 5-9 objects in mind.
- Visual inspection gives an average value close to 2.

2 3 4 2 1 2 2 0

Data

Uniform data

- Visual inspection again gives an average value close to 2.
- Uniform data could be (relatively) big, but understandable without special tools.

Real data

Data fro	m Shipun	ov et al.,	2012
----------	----------	------------	------

 88
 22
 52
 31
 51
 63
 32
 57
 68
 27
 15
 20
 26
 3
 33
 7
 35
 17

 28
 32
 8
 19
 60
 18
 30
 104
 0
 72
 51
 66
 22
 44
 75
 87
 95
 65

 77
 34
 47
 108
 9
 105
 24
 29
 31
 65
 12
 82

- However, in most cases biological data is much more complicated.
- Therefore, we will need specific (statistical) tools even for preliminary description of data.

Why do we need statistics Samples

Sampling

- Biologists often work with large numbers of objects and therefore need to sample (subset) initial population.
- However, the sample may not necessary be a good representative of a population.
- Only statistical tools will help to determine the reliability of the sample.

Comparing two populations

- Even samples chosen at random from two different populations may not necessary be different.
- Only statistics will help to recognize "true" difference from "false" difference.

Experiments

たんたんたんちんちょう

Control group (before the experiment)

KAKAKAKAKA

Treatment group (before the experiment)

Treatment group (after 300 days)

- Biologists often conduct experiments. However, natural variation among individuals within a sample may obscure any effect of an experimental treatment.
- Again, only careful examination of samples with appropriate tools will make results of experiment robust.

Samples

Final question (2 points)

Why do we need statistics

Samples

Final question (2 points)

What is sampling?

Summary

Statistics is:

- Gathering data
- Making samples
- Applying tools
- Develop new ways of things above

For Further Reading

A. Shipunov.
Biometry [Electronic resource].
2012—onwards.
Mode of access:
http://ashipunov.info/shipunov/school/biol 240

A. Shipunov, and others. Visual statistics. Use R! DMK Press, 2012. Translated from Russian.

