М.А. Басистова

ЛИТОЛОГИЯ И УСЛОВИЯ ОБРАЗОВАНИЯ АЛЛОХОННЫХ ИЗВЕСТНЯКОВ НИЖНЕГО КАРБОНА ЮГО-ЗАПАДНОГО КРЫМА

В поле распространения преимущественно глинистых пород мендескской толщи, входящей в состав экидоринской серии верхнего триаса—нижней юры (T₃; J₁-e), на южной окраине с. Трудолобовки (Бахчисарайский район Юго-Западного Крыма) встречаются аллохтонные известняки нижнего карбона (C₃) в виде крупных глыб—олистолитов, известных в научной литературе как экзотическая глыба.

На территории Юго-Западного Крыма до настоящего времени не обнаружено коренных выходов каменноугольных пород, поэтому главную роль в изучении развития этого региона в палеозойское время играют исследования аллохтонных известняков.

Аллохтонные известняки были хорошо охарактеризованы палеонтологически, однако с точки зрения литологии изучены слабо. Вследствие этого автором были проведены детальные литологические исследования для выявления состава, строения и условий образования известняков.

Аллохтонные известняки встречены в виде крупной глыбы размером 40×50 м в правом борту Аммонитового осадка, в 200—250 м от его устья. Макроскопически известняки однородные, лымчатые-серые с поверхности и серые на свежем сколе, афантовые, незамытые, массивные, крепкие, разбиты многочисленными трещинами толщиной от долей миллиметра до 10 мм, выполненные светлым кристаллическим кальцитом спаритом.

Несмотря на их макроскопическую однородность, микроскопически известняки литологически разнообразны на отдельных участках исследованной глыбы—олистолита — по составу биогенных остатков и количеству микрозернистой основной массы. В них встречаются остатки красных водорослей и целые раковины фораминифер, на долю которых иногда приходится более 60—80%; редко наблюдается мелкий раковинный детрит (бралломфодры, двустворки, остраокиды), обрывки мшанок и остатки мелких членников кронидей, общее содержание которых не превышает 10%. Биогенные остатки содержатся в микрозернистой основной массе, количественное соотношение которой колеблется в широких пределах — от 15—20 до 65—70%.

По комплексу признаков, прежде всего по компонентному составу биогенных остатков, по характеру и степени их сохранности и соотношению с микрозернистой основной массой, а также по структурно-текстурным особенностям, аллохтонные известняки подразделены на классы (биоморфные, детритовые и микрозернистые), которые в свою очередь разделены на несколько литологических типов.

Среди биоморфных известняков выделяются собственно биоморфные известняки и биоморфные с детритом (т.е. детритово-биоморфные). К первым относятся преимущественно водорослевые известняки, а ко вторым — водорослево-фораминиферовые.

Известия водорослевые состоят из нитей и трубоочек красных водорослей Donezella (до 65—75%), часто плотно спутанных между собой, что обусловливает вольколовообразное строение. Донцеллы (рис. 1) состоят из нитей клеток цилиндрической или бочкообразной формы, которые разделяются поперечными перегородками [4]. Стенки их клеток сложены микро-тонкозернистым кальцитом темно-серого цвета, а внутренняя

Рис. 1. Известняк водорослевый
постоят, а в центральных частях — микро-
более корродированные остатки водорослей, режне —
форминифер, вокруг которых происходило их образо-
вание. Многие исследователи принимают их за обломки
микроорганических ишествий или за копролиты, но для
микроежелчвков характерно зубчато-микропористое
строение и повышенное содержание тонкодисперсной
органки, придающей им более темную окраску.

Основная масса водорослевых известковых пред-
ставлена микроорганическим кальцитом, местами раскры-
ствозяных, с образованием участков, сложенных
вкладками мелкокристаллическим кальцитом — спаритом.

Терригенная примесь крайне редка (до 1%) и пред-
ставлена строительным веществом кварца тонкокамен-
ной размерности (0,05—0,1 мм).

Из минеральных новообразований встречаются
пирит, реже доломит, на долю которых приходится
менее 2%. Пирит (1—2%) наблюдается в виде тонко-
рассеянной пильи и (или) в виде отдельных хорошо
ограниченных мелких кристаллов; доломит (<0,5%) —
в виде ромбовидных размером от 0,02 до 0,04 мм, нередко
приуроченных к центральным частям микробиальных
шехт.

Из текстурных новообразований в известняке от-
мечаются стилолитовые швы (рис. 2), подчеркнутые
темным глинистым материалом. Среди них различают
относительно крупные с амплитудой до 1 см и мелкие
с амплитудой 0,5—1 мм. Более крупные являются бо-
лее ранними образованиями по сравнению с мелкими,
так как в них часто отмечаются рассеянные микроаг-
регаты пирита.

Вся порода разбита системой трещин толщиной от
0,1 до 10 мм. Основное количество местных трещи-
н <1 мм): изолятов и характеризуются
криволинейной поверхностью стенок, что может быть
каким-то признаком их формирования на ранней
стадии литификации известкового осадка. Более круп-
ные трещины (0,5—10 мм) прямолинейные, с ровными
стенками, выполнены мелко-среднекристаллическим
спаритом. Их формирование происходило уже в пол-
ностью литифицированным осадке.

Известняки водорослевые, донецелловые, слагают
основную часть глыбы, на их долю приходится в сред-
нем 60—70%.

Известняки водорослево-форминиферные (рис. 3)
состоят из целых раковинок крупных, реже мелких
форминифер (60—65%). Стенки их раковин сложены
темно-серым микрозернистым кальцитом. Более раз-
нообразная форма раковин характерна для крупных
форминифер. Среди них встречаются спирально-
плоскостные и спирально-витовые, двухрядные
раковины (рис. 4), возможно, представители р. Endothyra-
nopris в первом случае и р. Textularia — во втором.

В качестве примеси в них присутствуют остатки
донецелловых водорослей (20—25%) в виде отдельных
разрозненных трубочек, часто хорошо сохранявшихся.
Биогенные остатки заключены в микрозернистую ос-
новную массу, местами слабокристаллизованную, в
которой изредка встречаются мельчайшие растительные
остатки, представленные атрезией темно-буруй цвета.
Терригенная примесь обычно отсутствует или составляет менее 1%, в этом случае она представлена угловатыми квартцевыми зернами тонкокопечаной размерности. Из минеральных новообразований наблюдается пирит (до 1%) и отчасти доломит (<0,5%). Отдельные микроаггрегаты пиrita рассеяны в основной массе или крайне редко представляют собой фронтонды вокруг мельчайших растительных остатков.

Среди текстурных новообразований наблюдаются стилолитовьe швы двух типов: 1) более крупные (более ранние), подчеркнутые темным глинистым материалом с микроаггрегатами пиrita, с амплитудой до 1 см; 2) более мелкие (более поздние) с амплитудой 0,5—1 мм, подчеркнутые лишь глинистыми примазками.

Известняки рассечены системой относительно мелких и более крупных трещин (рис. 5) толщиной от 0,1 до 10 мм. Относительно мелкие волосовидно-изогнутые трещины и крупные с прямолинейными ровными стенками выполнены светлым кристаллическим кальцитом. Эти известняки встречаются редко, слагают небольшие участки и диагностируются только микроскопически.

Известняки детритовые (рис. 6) сложены преимущественно остатками иглокожих (до 55%), среди которых отмечаются зеленки криноидей (40—45%) и морских ежей (10—15%). Кроме того, в известняках крайне редко присутствуют мелкие фораминиферы, разрозненные трубочки красных водорослей — донецеллы. Цементирующая масса известняков сложена микрокристаллическим кальцитом, на фоне которого наблюдаются мелкие пятна рассеянного органического вещества желто-оранжевого цвета.

Терригенная примесь крайне редка (до 1%) и представлена зернами кварца средне-тонкокопечаной размерности (0,05—0,07 до 0,4 мм), форма которых варьирует от резко угловатой до полукруглой. Из аутигенных минералов встречаются микроаггрегаты пиrita, вокруг которого нередко наблюдается оклеенение, и единичные мельчайшие ромбики доломита (до 0,03 мм).

Из текстурных новообразований отмечаются трещинки и стилолитовые швы, аналогичные тем, что были описаны выше в других литологических типах алохонтных известняков. Детритовые известняки в глыбе присутствуют крайне редко.

Известняки микрокристаллические сложены микрокристаллическим кальцитом, на фоне которого наблюдаются редкие остатки красных водорослей и бентосной фауны (от 15 до 25%), отличающейся хорошей сохранностью. Органогенные остатки достаточно разнообразны по составу, несмотря на их небольшое содержание. Они представлены пятью таксономическими группами фауны: постоянно присутствуют фораминиферы (до 20%) и красные водоросли — донецеллы, в меньшей степени остатки (2—3%), реже мшанки (рис. 7) и брахиподы (1—2%). Размер биогенных остатков довольно одинаков (0,2—0,3 мм).

Терригенная примесь крайне редка (<1%) и представлена угловатыми квартцевыми зернами тонкокопечаной размерности.
Водорослевые донецелловые известняки накапливались в заливной обстановке и (или) на удаленных от берега участках внутреннего шельфа мелководно-морского бассейна при пассивном гидродинамическом режиме; они, возможно, образовывали водорослевые "луга" или покровы [3, 4].

Формирование детритовых известняков происходило в открыто-шельфовой части мелководного морского бассейна, возможно, под влиянием небольших течений, о чем свидетельствует резкое преобладание в их составе остатков иглокожих над другими представителями фауны, а также их примерно одинаковый размер.

Выводы. 1. Несмотря на макроскопическую однородность аллютохтонных известняков микроскопически среди них выделены 3 класса: биоморфные, детритовые и микроорганические, которые в свою очередь подразделены на несколько литотипических типов.

2. Накопление известняков происходило на разных участках морского мелководного бассейна — от лагуно-заливных до открыто-шельфовых. Микроорганические известняки накапливались в лагунах и заливно-заливных обстановках с пассивной гидродинамикой. Формирование биоморфных водорослевых и водорослево-форматиновых происходило в заливных обстановках и на удаленных от берега участках внутреннего шельфа, а детритовых — в открыто-шельфовой части морского бассейна, возможно, под влиянием небольших течений.

3. Во всех типах известняка аутигенез (минеральный и текстурный) проявлен слабо из-за значительного присутствия микроорганистой основной массы, что препятствовало их постседиментационным преобразованиям, за исключением чisto водорослевых донецелловых известняков, некоторая часть которых перекристаллизована.

4. В аллютохтонных известняках отмечаются ранние и поздние этапы формирования стилолитовых швов.

В заключение автор выражает благодарность Г.М. Седовой за помощь в написании статьи, а также Т.А. Шардановой за помощь в отборе материала.

СПИСОК ЛИТЕРАТУРЫ

2. Геология СССР. Т. VIII, ч. 1. М., 1969.
3. Киревская Г.Д., Максимова С.В. Фациальные изменения известняков Донецкого бассейна. Л., 1959.
5. Михлюх-Маклай А.Д., Муратов М.В. О каменноугольных и пермских породах Крыма // Изв. вузов. Геология и разведка. 1958. № 8.
8. Сократов Г.И. О пермских отложениях в Крыму и их месте в геологической структуре Крыма // Докл. АН СССР. 1950. Т. 71. № 4.
9. Турыновская Т.С. О нижнекаменноугольных отложениях Крыма // Изв. АН СССР. Сер. геол. 1951. № 2.

Поступила в редакцию 22.12.2005