ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ
ГЕОЛОГИЯ И РАЗВЕДКА
1958, № 6

И. В. АРХИПОВ

КИМЕРИДЖ-ТИТОНСКИЙ ФЛИШ ГОРНОГО КРЫМА
И УСЛОВИЯ ЕГО ОБРАЗОВАНИЯ

Отложения кимериджского и титонского ярусов верхней юры пользуются в Горном Крыму весьма широким распространением. Ими сложены осевая часть и северные склоны Главной гряды Крымских гор почти на всем ее протяжении, от Феодосии на востоке до Балаклавы на западе.

Руководящая фауна аммонитов кимериджа и титона встречается лишь в самых низах и верхах кимеридж-титонской толщи. Основная же часть ее разреза палеонтологически охарактеризована очень слабо. Это обстоятельство заставляет рассматривать отложения обоих ярусов как единый, стратиграфически нерасчлененный комплекс осадков. На подстилающих породах бат-келловейского и оксфорд-лузитанского возрастов кимеридж-титонские отложения залегают трансгрессивно, часто с конгломератами в основании.

Характерной особенностью кимеридж-титонских отложений Горного Крыма является исключительное разнообразие и контрастность их фаший. На том, сравнительно небольшом пространстве, которое занимает Главная гряда Крымских гор, кимеридж-титонская толща несколько раз, частично или полностью, фактически меняет свой литологический состав. При этом смена фаший совершается очень быстро — на расстоянии первых километров, а нередко и нескольких сотен метров.

В качестве одной из главных составных частей полифациальной кимеридж-титонской толщи выступают флишевые образования, фактически тесно связанные со всеми другими частями этой толщи, — различными известняками, песчаниками, конгломератами и др. (рис. 1).
Это предоставляет в распоряжение геолога редкую и весьма ценную возможность наблюдать в ряде мест непосредственные переходы флишевых пород в одновозрастные с ними, разнообразные по составу и структурным особенностям, отложения нефлишевого («нормального») типа.

Несмотря на то, что верхнеюрские отложения Горного Крыма в течение продолжительного периода изучались рядом исследователей, многие интересные особенности вещественного состава и морфологии киммеридж-титонского флиша, а также его внутренней изменчивости и характера взаимоотношений со смежными осадочными образованиями не освещены в геологической литературе. Некоторые геологии избегают применять к рассматриваемым отложениям термин «флиш», хотя они, как правило, обладают всеми признаками типично флишевых образований. Киммеридж-титонский флиш восточной части Горного Крыма впервые был описан Д. В. Соколовым. Более подробная характеристика флишевых отложений киммеридж-титонского возраста восточной оконечности Крымских гор дана М. В. Муратовым [5]. Флишевые фации киммеридж-титона Восточного и Западного Крыма описаны А. С. Монсеевым [4] и М. В. Муратовым [6].

Не останавливаясь на общих признаках флишевых образований и на разнообразных представлениях о их происхождении [1, 2], мы переходим к краткой характеристике главных особенностей киммеридж-титонского флиша Горного Крыма и его фациальных взаимоотношениях с другими осадочными образованиями.

В Горном Крыму известны две значительно удаленные друг от друга области распространения флишевых отложений киммеридж-титона: на востоке, между восточной окраиной Караби-Яйлы и Феодосией и на западе — в районе Байдарской и Варнаутской долин. Положение этих областей в структурно-tektonическом плане Горного Крыма весьма сходно: в обоих случаях они располагаются в центральных частях крупных синклинальных структур — синкллиниорифтов Восточного и Юго-Западного Крыма. В пределах каждой из этих областей обращает внимание спорадичность пространственного размещения, сложность конфигураций и различная величина выходов флиша, нередко полностью изолированных друг от друга (см. рис. 1). Площадь таких флишевых « пятен» и «заливов» зачастую измеряется всего несколькими квадратными километрами, а иногда и сотнями квадратных метров.

Мощность флишевых образований непостоянна. В восточной части Горного Крыма, где флишем сложен почти весь киммеридж-титонский разрез, он превышает 2000 м. В Западном Крыму (район Байдарской долины) флиш развит преимущественно в нижних и средних частях разреза киммеридж-титонской толщи. Мощность флиша здесь очень изменчива и колеблется от первых сотен метров до нескольких метров и даже дециметров в местах проникания флишевых «языков» внутрь других осадочных пород.

Описываемый флиш представляет собой комплекс ритмично переслаивающихся зернистых (мелкообломочные известняки, песчаники, алевролиты) и глинистых пород (рис. 2), т. е. имеет двухслойное строение. Чаще всего флишевый ритм начинается мелкообломочными известняками или разнозернистыми песчаниками. Реже в качестве начального элемента ритма присутствуют пелитоморфные глинистые известняки и сидериты, хотя участками флиш фациально переходит в толщи, состоящие исключительно из глин и сидеритов. Иногда сидериты не образуют самостоятельных прослоев в глинах, а слагают кровлю горизонтов обломочных пород (известняков и песчаников), прирастая к нему сверху в виде корки. В этих случаях ритм состоит из трех элементов.
Микроскопическое изучение мелкообломочных известняков показало, что они состоят из различных по величине (в среднем от нескольких долей миллиметра до первых миллиметров) и по форме (чаще всего округлых) обломков разнообразных известняков, среди которых в значительных количествах встречаются обломки водорослевых известняков. Часть известняковых обломков представлена перекристаллизованными и пелитоморфными разностями. Обломки известняков сцементированы кристаллическим кальцитом. Из терригенной примеси в известняках чаще всего присутствует кварц.

Песчаники обычно представлены полимиктовыми разностями. Под микроскопом видно, что в их состав входят разновеликие угловатые и полукатаные зерна кварца и разнообразных пород, среди которых преобладают обломки перекристаллизованных органогенных и микрозернистых известняков. В некоторых шлифах в значительных количествах присутствуют зерна кварцитовых пород и эфузивов. Обломки полевых шпатов сравнительно редки. Для мелкозернистых песчаников характерно повышенное содержание чешуек биотита и серицита. Цемент песчаников преимущественно карбонатный. Из вторичных минералов наиболее обычны кальцит и гидроокислы железа. Некоторые пласты песчаников содержат мелкие углистые частицы.

Неизменной частью флишевого ритма являются весьма различные по своей окраске глинистые породы. Наиболее часто встречаются серые и зеленоватые глины, однако местами в их окраске появляются угловатые, желтоватые и даже кирпично-красные тона. В большинстве случаев глины карбонатизированы. Обычной примесью глин является песчано-алевритовый материал.

Мощность образующих флиш слоев меняется от нескольких сантиметров до первых метров. Особенно характерны колебания в мощностях для прослоев известняков. Одновременно с мощностью горизонтов обломочных известняков нередко увеличиваются и размеры слающих их обломков. Средняя мощность прослоев песчаников и мелкообломочных известняков составляет 8—15 см, прослоев и конкретий сидеритов — 5—7 см. Горизонты глинистых пород обычно имеют несколько большую мощность, поэтому в разрезе флиша количественно преобладает глинистый компонент.

Толща в целом отличается постоянством слающих ее пород и однообразным характером их чередования. Однако в разных ее частях соотношение между прослоями известняков, песчаников и сидеритов
изменяются в весьма широких пределах — от приблизительно равных количеств до почти полного исчезновения из разреза одной или двух перечисленных пород. Во флише четко обособлены горизонты пород разного гранулометрического состава. Прослои песчаников и других обломочных пород отделены от перемещающих глин по своей кровле обычно почти так же резко, как и по подошве. Вместе с тем внутри прослоев обломочных пород заметного уменьшения крупности обломков снизу вверх, от подошвы пласта к его кровле, в большинстве случаев не наблюдается. На нижней поверхности пластов обломочных пород, как правило, присутствуют очень хорошо выраженные флишевые знаки. Ископаемые органические остатки встречаются в описываемом флише очень редко.

Больной интерес представляют содержащиеся внутри флиша линзы рифогенных известняков и горизонты осадочных известняковых брекчий.

Рис. 3. Горизонт известняковых брекчий внутри кимеридж-титонского флиша:
а — вид в разрезе (восточный склон Караби-Яйлы), б — вид в плане (верховья р. Тонас)

Рифогенные известняки состоят главным образом из известковых водорослей. Особенно часто рифовые образования внутри флиша встречаются к востоку от Караби-Яйлы. Размеры включенных во флишевую толщу рифовых тел весьма разнообразны. Местами (у ручья Панагия) они не превышают в длину первых десятков, а по мощности — всего нескольких метров.

Осадочные известняковые брекчии приурочены к местам фациально-переходных зон от флиша к известнякам. Прекрасным примером такой зоны могут служить восточные склоны Караби-Яйлы, где известняковые брекчии образуют внутри флишевой толщи несколько хорошо выделяющихся по простиранию горизонтов, средняя мощность которых составляет 2—3 м, но иногда достигает и значительно больших величин. Брекчи состоят из беспорядочно нагроможденных угловатых глыб (до нескольких метров в поперечнике) и более мелких обломков разнообразных известняков, цементированных в основном карбонатно-глинистым материалом. Местами глыбы известняков непосредственно входят во флиш и «обтекаются» им (рис. 3). Наблюдается переходы горизонтов брекчий по простиранию с одной стороны в массивные мелкообломочные и пелитоморфные известняки, а с другой — внутри флиша, где они выступают в качестве начальных элементов флишевого ритма.

Резкая фациальная изменчивость кимеридж-титонских отложений Горного Крыма нашла свое отражение и внутри описываемого флиша. Можно указать много случаев фациальной смены флиша определенного вещественного состава флишевыми или близкими к ним образованиями с существенно иным набором пород. Так, во многих местах восточной части Горного Крыма в низах кимеридж-титонской толщи обнаруживается флиш, сложенный исключительно глинами и полимиктовыми разночер-
нистыми песчаниками с большим количеством обугленных растительных остатков. В ряде участков этот флиш на коротком расстоянии (сотни метров — первые километры) фактически замещается флимовой толщей, состоящей из ритмично чередующихся глини и обломочных известняков. Киммеридг-титонский флиш Байдарской долины — монотонное переслаивание глинистых и обломочных известняков с глиной — переходит в отдельных местах долины Кайту (западное ответвление Байдарской долины) во флишеподобную толщу, состоящую только из глин и глинистых сидеритов, играющих роль первого элемента ритма. Сидеритовые прослои в глинах повторяются с такой же частотой, с какой в смежном карбонатно-глинистом флише чередуются горизонты известняков и глин. Переходным между этими двумя одновозрастными толщами является флиш, в котором глины переслаиваются с песчанистыми сидеритами и сильно оклеененным седым обломочными известняками. Известны также случаи быстрого фацального перехода флиша, состоящего из глин и обломочных известняков, во флиш, ритм которого начинается уже не обломочными, а пелитоморфными известняками, и ряд других примеров внутренней фацальной неоднородности флишевой толщи.

Особого внимания заслуживает другая сторона изменчивости рассматриваемого флиша — повсеместно наблюдаемая непосредственная фацальная связь флишевых отложений с другими типами морских осадков. Именно эта особенность киммеридг-титонского флиша представляет нам наиболее интересной и важной при решении основного вопроса, связанного с определением описываемых флишевых образований — вопроса о происхождении их ритмической слоистости. Ниже приводятся примеры, иллюстрирующие фацальные взаимоотношения киммеридг-титонского флиша с смежными осадочными образованиями.

Северо-восточнее горы Манджил (район Судака) киммеридг-титонский флиш песчано-галечно-глинистого состава занимает внутренний узкой синклинали. Вся нижняя часть флиша на расстоянии нескольких десятков — первых сотен метров фактически замещается песчанниками и вулканог-галечными конгломератами, слагающими центральную синклинории (рис. 4). Состав песчаниковых прослоев в флише и песчаников, вмещающих песчанник-конгломератовой толщи один и тот же (флишевые песчаники обычно лишь более мелкосернистые). Картина, весьма близкая описанной, наблюдается в другом районе Восточного Крыма — Айсерезской долине. Здесь нижняя часть киммеридг-титонской флишевой толщи, представляющая собой ритмично переслаивающиеся глины и песчаники, обнаруживается в дне долины, ширина которой составляет 1,8—2 км. Западный и восточный борта долины, имеющих синклинальное строение, сложены толщей конгломератов, причем верхние горизонты конгломератов очень быстро фацально переходят во флиш.

Редкий случай фацального взаимоотношения флиша с конгломератами отмечен в урочище Панагия (восточнее нагорья Караби-Яйлы). Хорошая обнаженность низов киммеридг-титонского разреза в этом ме-
стет позволяет отчетливо наблюдать, как флишевая толщ по мощностью около 250—300 м, образующая грандиозный амфитеатр урочища, на западном его склоне исключительно резко (на протяжении не более 400—500 м) сменяется по простиранию конгломератами. Эта смена происходит столь быстро и неожиданно, что при беглом взгляде может быть принята за тектоническое сближение фаций. В геологической литературе хорошо известен (М. В. Муратов, 16) фациальный переход кимеридж-титонского флишевого комплекса восточной части Горного Крыма общей мощностью около 2000—2200 м в толшу слоистых и массивных известняков Карауб-Яйлы, совершающийся на расстоянии 1—2 км по западному склону долины р. Тонас. Переход от флиша (глины с прослоями известняков) к слоистым яйлинским известнякам здесь осуществляется путем увеличения мощности известняковых прослоев в глинах и соответствующего выклинивания разделяющих их глинистых горизонтов.

Кимеридж-титонский флиш Байдарской долины фашинально замещается по направлению к востоку и западу толщей грубослоистых красных брекчевидных известняков. Брекчевидные известняки представляют собой настолько своеобразное осадочное образование, что заслуживают отдельного описания. Они состоят из разновеликих (от весьма мелких до нескольких метров в поперечнике) угловатых и слабоокатанных обломков и глыб разнообразных известняков, сцементированных красным карбонатно-глинистым материалом (рис. 5). В окраске самих известняков, слагающих обломки, также преобладают красные, розовые и коричневые тона. Местами цементирующее вещество очень рыхлое, несвязанное, обломки известняков как бы пересыпаны им. Интересно, что крупные глыбы известняков в большинстве случаев также состоят из отдельных известняковых обломков, в которых в свою очередь нередко различается еще более мелкая обломочная структура, т. е. в брекчевидных известняках намечается обломочное строение нескольких порядков. Местами, вблизи участков фациального замещения брекчевидных известняков флишем, внутри толщи брекчевидных известняков наблюдаются включения отдельных маломощных (иногда не более 0,5—0,7 м) пакетов флишевых пород, характер взаимоотношения которых с вмещающими отложениями не вызывает сомнений относительно положения их как прослоев внутри брекчевидных известняков. Эти
флишевые образования состоят из мелкообломочных коричневатых известняков и красновато-коричневых глин. Общая мощность толщи брекчевидных известняков, слагающих обширные пространства юго- западной оконечности Главной гряды, измеряется несколькими сотнями метров. Территориально брекчевидные известняки занимают промежуточное положение между кимеридж-титонским флишем Байдарской долины и свитой серых слоистых известняков того же возраста, фактически замещающих красноватые брекчевидные известняки по западной оконечности плато Айпетринской Яйлы (рис. 6). Свита яйлинских известняков представляет собой мощную однообразную толщу тонально-слоистых (средняя мощность слоев 10—15 см) серых глинистых известняков и мергелей с более мощными глинистыми пластами светло-серых известняков и отдельными зернистыми прослоями серых карбонатных глин. Слоистость в толще известняков отчетливо выражена благодаря частому чередованию и резкой смене в вертикальном направлении более и менее глинистых известняковых разностей, а также за счет тощих глинистых прослоев, разделяющих однообразную массу известняков на множество пластов.

Количество приведенных примеров фаций взаимоотношений флиша с другими типами отложений кимеридж-титонского возраста можно было бы увеличить. Все они показывают, что кимеридж-титонский флиш Горного Крыма нельзя изучать в отрыве от других, неразрывно связанных с ним нефлишевых отложений. Флиш является органической составной частью и полноправным представителем фациальной и литологической очень сложном осадочном комплекса. А поскольку это так, то и сам факт образования флиша нужно рассматривать в связи с возникновением целого ряда структурно-литологических особенностей в других, смежных с флишем, осадках того же возраста, не ограничивая поле деятельности флишеобразовательного фактора участками разоблаченных флишевых пятен.

Основной причиной возникновения наиболее существенных и характерных особенностей внутреннего строения кимеридж-титонской осадочной толщи, в том числе и флишевой слоистости отдельных ее частей, следует, на наш взгляд, признать тектонические движения. Только пульсационными тектоническими колебаниями всего осадочного бассейна, включая и области сноса, сочетавшимися с направленными движениями зон относительного погружения и воздымания, можно удовлетворительно объяснить все рассмотренные выше случаи взаимоотношения флишевых и нефлишевых пород, связи между различными по вещественному составу типами флишевых образований и, наконец, природу флишевой ритмичности. Фактом, подтверждающим ту главенствующую роль, которую в процессе образования кимеридж-титонского флиша.
ша играли тектонические колебательные движения, может служить прежде всего повсеместно наблюдающаяся особо тесная фациальная связь флиша с грубообломочными породами — брекчевидными известняками и конгломератами. Образование толщи брекчевидных известняков с обломочным строением нескольких порядков немыслимо предстать вить без многократно повторявшихся размывов дна осадочного бассейна, наименьшее сопровождавшихся дроблением и переотложением уже частично затвердевшего осадка. О том, что размывы были периодиче-
скими и проявлялись исключительно резко, свидетельствуют, кроме наличия обломочных структур нескольких порядков, присутствие в составе брекчевидных известняков крупных глыб, угловатая форма слающих известняков обломков и их беспорядочное расположение. Общий красный цвет брекчевидных известняков и частое присутствие в их зенитном рыхлом вещества типа terra rossa указывает на то, что отдельные участки дна осадочного бассейна во время накопления извест- 
няковой толщи, по-видимому, периодически выводились из-под уровня воды и подвергались субаэральному выветриванию. Последнее тем более вероятно, что характер известняковых брекчий указывает на их образование в крайне мелководных условиях. Подобные размывы могли происходить лишь при периодических, быстро наступавших и интенсивно протекавших обмелениях значительных площадей дна бассейна, следовательно, при участии в этом процессе тектонических колебательных движений (конечно, размывы должны были происходить на фоне общего прогибания дна бассейна). Ритмичное строение флиша, так же как и тонкую слоистость яйлинской известняковой свиты, проще и естественнее всего, как нам кажется, объяснить теми же периодическими об- 
мелениями, вызванными тектоническими колебаниями, которые привели к образованию грубообломочного строения мощных известняковых толщ, смещающих флиш по простиранию. Однако, если в случае образования брекчевидных известняков эти обмеления вызвали многократное пе- 
риодическое взламывание однородного известнякового осадка, а в толще тонкослоистых пелитоморфных известняков были запечатлены в четких пластовых поверхностях, то во флише они выразились в частом ритмичном чередовании пород разного гранулометрического или лито- 
логического состава. Красночековым доказательством сходства меха-
низма образования флиша и брекчевидных известняков служат вы- 
клинивающиеся по простиранию прослои флишевых пород, содержа- 
щиеся внутри толщи брекчевидных известняков и, наоборот, переходы по простиранию горизонтов осадочных и известняковых брекчий в началь- 
ные элементы флишевого ритма. Причиной того, что один и те же ко- 
лебательные движения получили в смежных районах (а иногда в оди- 
ном и том же разрезе, но на разных стратиграфических уровнях) столь разнообразные выражения, следует считать различия в относительных 
глубинах отдельных участков кимеридж-титонского осадочного бассей- 
на и в их разной удаленности от источников сноса.

Если теперь перейти от фактических аналогов флиша к самому флишу, то в нем также имеются доказательства его образования на фо- 
не тектонических пульсационных колебаний. Пожалуй наиболее убедитель- 
но в пользу происхождения флишевой слоистости в зависимости от тектонических колебаний, охватывавших как участки суши, так и области накопления осадков, свидетельствуют данные о периодических колебаниях глубин бассейна, в котором отлагался флиш.

Внутри кимеридж-титонского флиша в качестве таких данных мо- 
гут служить резкие смены пород разного гранулометрического состава, 
а также чередование глин с такими осадками как пелитоморфные из- 
вестняки и сидериты. На неоднократно повторявшиеся в процессе отло- 
жения флиша резкие смены глубин указывают, кроме того, скакообраз- 
ные изменения характера гидродинамического режима в придонных час-
стях бассейна, запечатленные в структурных и морфологических особенностях начальных и конечных элементов флишевого ритма.

О самой природе тектонических колебаний, характере их протекания и, прежде всего, о том, соответствует ли скорость погружения скорости поднятия, судить трудно. Можно говорить лишь о некоторой не-равномерности амплитуд (и, по-видимому, интенсивности) колебаний, что отразилось в присутствии внутри флишевого разреза прослоев обломочных пород разной мощности и разного гранулометрического состава. Нельзя не отметить и то, что смена движений различного знака должна была совершаться достаточно быстро, на что указывают весьма резкие границы между чередующимися обломочными и глинистыми породами. Естественно считать, что наиболее благоприятными для фиксации тектонических колебаний в виде флишевых ритмов должны быть условия средних глубин. В пользу того, что глубины в местах накопления кимеридж-титонского флиша были действительно незначительными, говорит непосредственная его связь с заведомо мелководными образованиями — брекчевидными известняками, конгломератами и песчаниками (чаще с включениями углистых частиц), которые не только замещают флиш по простиранию, но нередко и содержат флишевые прослои внутри себя. О мелководности бассейна, в котором происходило отложение флишевых осадков, красноречиво свидетельствует также присутствие внутри кимеридж-титонского флиша рифогенных известняков, глубины образования которых, как известно, не превышают нескольких десятков метров.

Попытки объяснить причины возникновения ритмичности кимеридж-титонского флиша не тектоническими колебаниями, а каким-либо другим способом, встречают серьезные возражения со стороны фактических данных. Как отмечает Н. Б. Вассоевич [2], основным «конкурентом» колебательной теории флишеобразования является гипотеза эпизодичности в различных ее вариантах: периодическое взмучивание осадков бурями, сейсмическими сотрясениями и т. п. [1]. Однако рассмотренные выше примеры флишевых или близких к ним образований, представленных чередующимися породами различного литологического, но одинакового гранулометрического состава (чередование глин и глинистых известняков), с точки зрения гипотезы эпизодичности удовлетворительного объяснения получить не могут. В противоречии с этой гипотезой находится и обычно наблюдаемое отсутствие в прослоях обломочных пород внутри глини четко выраженного заковерного уменьшения размеров обломков от подошвы пласта к его кровле, а также весьма резкие переходы от кровли пласта обломочной породы к вышележащей тонкоуглененной глине. Объяснение флишевой слоистости как результата периодического приноса грубоего и тонкого обломочного материала донными течениями неприменимо не только из-за того, что донными течениями без изменений глубины трудно истолковать ряд особенностей кимеридж-титонского флиша и, в первую очередь, его ритмичное строение и резкие смены пород различного гранулометрического состава, но главным образом потому, что течениями нельзя объяснить природу некоторых фациальных аналогов флиша. Повсеместно проявляющаяся фацальная связь флиша с брекчевидными известняками не случайна, она служит доказательством того, что как ритмичная слоистость флиша, так и брекчевидное строение известняков, заключающих внутри себя пачки флишевых пород и переходящих во флиш по простиранию, обязаны своим происхождением одной и той же главной причине. Поэтому, если мы примем за первопричину ритмичной слоистости флиша действие донных течений, то мы должны ими же объяснить происхождение брекчевидного строения известняков, так как причины возникновения наиболее существенных особенностей этих двух органически неотделимых друг от друга осадочных образований не могут быть
различными. Объяснить же происхождение брекчиевидного строения мощной толщи известняков за счет действия донных течений по меньшей мере затруднительно.

Конечно, в механизме образования первых элементов флишевых ритмов, представленных обломочным породам, течениями, распределяющими обломочный материал по дну бассейна, принадлежит немаловажная роль. Однако в общем итоге эта роль сводится к роли частого вспомогательного фактора, подчиненного более общей главной причине.

Гипотезы образования флиша путем эпизодических взмучиваний и донных течений являются в настоящее время одними из наиболее рас пространенных. Что касается остальных теорий возникновения слоистости флишевого типа, то возможности объяснения с их помощью основных особенностей кимеридж-титонского флиша еще более ограничены.

Из всего вышеизложенного можно сделать следующие выводы:
1. Флишевые отложения кимеридж-титонского возраста Горного Крыма являются составной частью полицирального осадочного комплекса, со всеми членами которого они тесно связаны в пространственном и возрастном отношениях.
2. Описанный флиш не имеет определенного вещественного состава. В различных частях флишевой толщи (иногда в непосредственной близости) совершенно аналогичным образом могут чередоваться весьма разнообразные по своему составу породы. Внутри флишевого комплекса наблюдаются фашиальные переходы одной разновидности флиша в другую.
3. Характер распределения флишевых отложений внутри кимеридж-титонской толщи и их взаимоотношения с другими одновозрастными осадочными образованиями свидетельствуют о том, что накопление флиша и осадков нефлишевого типа происходило одновременно в одном и том же бассейне и что причины происхождения ритмичной слоистости флишевых пород должны были проявляться на значительно более широких площадях. Чем участки отложения флиша, отражаясь одновременно и на облик осадков, фактически замещающих флиш. Иначе говоря, кимеридж-титонский флиш не отличался исключительно условиями своего образования. причины его возникновения были общими для всего кимеридж-титонского бассейна.
4. Основной причиной образования ритмичной слоистости кимеридж-титонского флиша следует считать тектонические колебательные движения пульсационного типа, охватывавшие не только области размывавшейся сушки, но и участки осадочного бассейна. То обстоятельство, что флиш отлагался лишь в отдельных участках бассейна, а не по всей его площади, объясняется благоприятными для процесса флишообразования геоморфологическими формами в этих участках, их оптимальной удаленностью от источников сноса терригенного материала и другими обстоятельствами, зависящими в основном от дифференциальных тектонических движений. Физико-географические факторы (главным образом донные течения) играли в процессе образования флишевой слоистости лишь вспомогательную роль.
5. Одновременно с накоплением флиша в соседних районах бассейна происходило отложение осадков, слоистость или обломочное строение которых обязаны своим происхождением тем же самым тектоническим колебаниям, которые в смежных участках запечателись в разрезе в виде флишевой слоистости.
6. Глубины бассейна, в котором происходило отложение флиша, были не велики. Пример кимеридж-титонского флиша Горного Крыма дает основание говорить о том, что условия средних глубин для накопления осадков флишевого типа не только вполне допустимы, но, по-видимому, и наиболее благоприятны.
ЛITERATURA

1. Н. Б. Вассоевич. Флиш и методика его изучения, Гостоптехиздат, 1948.
2. Н. Б. Вассоевич. Условия образования флиша, Гостоптехиздат, 1951.
3. Б. М. Келлер. Флишевая формация палеозоя в Зилаирском синклинарии на Южном Урале и сходные с ней образования, Тр. Ин-та геол. наук АН СССР, вып. 104, 1949.
4. А. С. Моисеев. Основные черты строения Горного Крыма, Тр. Ленингр. об-ва ест., № 1, 1935.
6. М. Б. Муратов. Тектоника и история развития альпийской геосинклинальной области юга Европейской части СССР и сопредельных стран. Тектоника СССР, т. 2, Изд. АН СССР, 1949.

Московский геологоразведочный институт им. С. Орджоникидзе

Статья поступила в редакцию 3 февраля 1958 г.