Reconstructing the palaeoenvironment of the Middle Russian Sea during the Middle–Late Jurassic transition using stable isotope ratios of cephalopod shells and variations in faunal assemblages

Hubert Wierzbowski a,⁎, Mikhail Rogov b

a Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, ul. Twarda 51/55, PL 00-818 Warszawa, Poland
b Geological Institute, Russian Academy of Sciences, Pyzhevsky lane 7, 119017 Moscow, Russia

Abstract
Oxygen and carbon isotope data of well-preserved belemnite rostra and ammonite shells are presented from the Callovian–Oxfordian boundary (uppermost Lamberti to lowermost Cordatum zones) of the Dubki section near Saratov in the Russian Platform. Palaeotemperatures calculated for nektonbenthic belemnites (averages of 5 °C and 8 °C for cylindroteuthids and belemnopseids, respectively) show the presence of cold bottom waters in the central part of the Middle Russian Sea during the studied interval. Palaeotemperatures calculated for ammonites, which are assumed to have lived in near-surface waters, are considerably higher (average 13 °C). The presented data show a vertical thermal gradient in the Middle Russian Sea. The belemnite oxygen isotope record and the relative abundances of ammonite families in the Dubki section do not correlate with each other probably as a result of different depth habitats of ammonites and belemnites. A review of literature isotope data shows the climatic zonation in European seas at the Middle–Late Jurassic transition. Despite the flux of cold polar waters to the Middle Russian Sea and the area of Scotland there is no evidence for glaciation at the Middle–Late Jurassic transition. Changes in water circulation during a sea-level highstand were likely a source of spreads of cold bottom waters and bacteriopodammite fauna in this time period. The belemnite isotope record of the Callovian–Oxfordian boundary in the Russian Platform is characterized by significant scatter of δ13C values. No temporal carbon isotope trend is observed. The δ13C values of Russian belemnite rostra average 2.6‰ VPDB being 1 to 2‰ higher than the values of coeval Lower Oxfordian belemnites from the area of the Submediterranean ammonite province. Higher (than Submediterranean) δ13C values of Russian belemnite rostra are likely related to high biologic productivity and/or high organic matter burial in semi-isolated Boreal–Subboreal marine basins.

1. Introduction
Oxygen isotope records of belemnite rostra and fish teeth from the Russian Platform, eastern France and western Switzerland show prominent decreases in seawater temperature during the Late Callovian–Early Oxfordian (Barskov and Kiyashko, 2000; Dromart et al., 2003a,b; Lécuyer et al., 2003; Podlaha et al., 1998; Price and Rogov, 2009; Riboulleau et al., 1998; Veizer et al., 1995). Relatively constant seawater temperatures during the Callovian and the Oxfordian accompanied by strong perturbations in the global carbon cycle are on the other hand reported from central Poland (Wierzbowski, 2002; Wierzbowski et al., 2009). There is no agreement on a scale and a source of the observed isotope variations at the Middle–Late Jurassic transition. Dromart et al. (2003a,b) and Lécuyer et al. (2003) suggested the occurrence of abrupt climatic changes i.e. a Middle Callovian thermal optimum, an ice age in the Late Callovian–Early Oxfordian, and a global warming starting from the Middle Oxfordian. The interpretation of Dromart et al. (2003a,b) and mass balance models of Louis-Schmid et al. (2007) additionally assumed low atmospheric pCO2 level as distinctive of a cool Late Callovian–Early Oxfordian period. According to the interpretation of Wierzbowski et al. (2009) a prominent Late Callovian sea-level rise may have led to the δ13Ccarbonate excursion, changes in water circulation and have constituted an important factor of faunal migrations. The isotope record of the Russian Platform which is characterized by an abrupt increase of 7–16 °C in the calculated seawater temperature during the Oxfordian (cf. Price and Rogov, 2009) is exceptional and was differently interpreted by Dromart et al. (2003a,b) and Wierzbowski et al. (2009).

This study is based on calcareous fossils from the Upper Callovian–Lower Oxfordian (uppermost Lamberti to lowermost Cordatum zones) of the Russian Platform. The focus of this contribution is to determine the isotope composition of different groups of fossils: belemnopseid and cylindroteuthid belemnites, which are considered to have been nekto-benthic dwellers, and...
ammonites, which are interpreted to have lived in shallower waters (cf. Anderson et al., 1994; Lécuyer and Bucher, 2006; Lukeneder et al., 2010; Price and Page, 2008; Wierzbowski, 2002; Wierzbowski and Joachimski, 2007). This methodology is used to obtain a multi-element dataset for the reconstruction of palaeoenvironment. The present study also provides discussion on possible sources of the distribution of ammonite and belemnite faunas. This approach is intended to shed light on the isotope record of the Russian Platform and expand knowledge of the Jurassic climate and oceanography.

2. Geologic setting

The Dubki section is located ~5 km NNE of Saratov (Fig. 1). Studied sediments were deposited in the Volga Basin — a central part of the epicontinental Middle Russian Sea connected with the Arctic Sea and the Tethys (Fig. 2). The Saratov area was situated at a palaeolatitude of 40–45°N during the Late Callovian and the Early Oxfordian (Fig. 2). Upper Callovian and Lower Oxfordian sediments exposed in Dubki have a thickness of 8.85 m and consist of dark and calcareous clays with phosphorite and pyrite concretions (Fig. 3). The sediments are rich in well-preserved fossils (bivalves, belemnites, ammonites, gastropods, bryozoans, decapods and ostracods; cf. Tesakova, 2008). Strongly calcareous clay and a 0.35 m thick marly layer occur in the uppermost part of the section (Fig. 3).

The sediments were deposited below storm weather wave as shown by the absence of storm deposits and the presence of a very low-energy environment. A significant depth of the basin is also shown by a diversified ostracod assemblage typical of the sublitoral zone (Tesakova, 2008). The presence of a rich and differentiated benthic fauna indicates well-oxygenated bottom conditions. The rich cephalopod and bryozoan fauna as well as findings of brachiopods and crinoids in Dubki point to normal marine salinity of the Middle Russian Sea in the Saratov area during the Callovian–Oxfordian transition. The long distance from land areas and the absence of freshwater flux to the basin may be shown by the scarcity of land plant debris in Dubki deposits (E. Tesakova and M. Ustinova; personal communication). Interestingly, the uppermost Callovian and lowermost Oxfordian in the Moscow area of the Russian Platform is also marked by the dominance of marine palynoflora in the microphyto-fossil assemblage (Smirnova et al., 1999). The reduction in the abundance and sharp changes in the diversity of ostracods observed in the upper part of the Mariae Zone and the Cordatum Zone in Dubki are however interpreted to have resulted from shallowing of the basin and the penetration of the sea-bottom by warm superficial currents (Tesakova, 2008).

The Dubki section is dated to the Lamberti Zone of the Callovian as well as the Mariae Zone and the lower part of the Cordatum Zone of the Oxfordian (Fig. 3). Its stratigraphy is based on ammonite fauna with employed NW European zones and subzones and local ammonite horizons (Kiselev and Rogov, 2005; Kiselev et al., 2006). Partly different ammonite horizons were previously distinguished by Mitta (2003), Keupp and Mitta (2004) as well as Rogov and Egorov (2003), who focused on the oppeliid assemblage of the uppermost section part. The lower part of the Dubki section (including the Henrici Subzone and a lowermost part of the Lamberti Subzone of the Lamberti Zone) was not exposed during sample collection.

3. Palaeobiogeography

The provincialism of Jurassic ammonite and belemnite fauna in Europe resulted in the development of two major biochores: the Boreal (Arctic) and the Mediterranean (Tethyan) Realm. Transitory faunistic zones like the ammonite–belemnite Boreal–Atlantic Subrealm (or Province) and ammonite Subboreal and Submediterranean provinces are also apparent in Europe (Doyle, 1987; Page, 2008; Page et al., 2009; Stevens, 1973; Westermann, 2000). The central part of the Middle Russian Sea — the Volga Basin was predominantly settled by Boreal–Subboreal ammonites (cardioceratids and kosmoceratids) in the course of the Late Callovian and the Early Oxfordian. Other ammonites (aspidoceratids, perisphinctids and oppeliids) that usually inhabited Submediterranean and Mediterranean provinces were also present in this area as result of a marked fauna overlap observed in Europe at the Callovian–Oxfordian transition (cf. Matyja and Wierzbowski, 1995). The mixed faunal assemblage of the Middle Russian Sea is typical of the ammonite Subboreal Province (sensu Page et al., 2009). The Saratov area of the Middle Russian Sea was settled by Boreal (cylindroteuthid) and Tethyan (belemnopseid) belemnites. The belemnopseid belemnite rostra (genus Hibolithes) are numerous in the Dubki section but small
(maximal length below 5 cm). The mixed-assemblage of Boreal cylindroteuthids and Mediterranean belemnopseids is characteristic of the belemnite Boreal–Atlantic Province (cf. Doyle, 1987).

The distribution of Middle–Late Jurassic marine fauna in Europe was given as an evidence for climatic zonation, environmental stability and the existence of physical barriers and sea currents (cf. Fürsich and Sykes, 1977; Ziegler, 1965). There is also no consensus about a source of variations in the ammonite assemblage at the Callovian–Oxfordian transition i.e. the spread of Boreal ammonites and the marked ammonite fauna overlap were given as evidences for global glaciation (Dromart et al., 2003a,b) or a global sea-level rise (Matyja and Sykes, 1977; Ziegler, 1965). There is also no consensus about a source of variations in the ammonite assemblage (referred in Section 7.2.).

4. Materials and methods

The sediments yielded ammonites, belemnites and bivalves. The collected ammonites are represented by Quenstedtoceras, Cardioceras and Vertumniceras (family Cardioceratidae), Easipodoceras and Peltoceras (family Aspidoceratidae), Sublunloceras (family Oppeliidae). The belemnites belong to the genera: Hibolithes (family Belemnopsidae), Cylindroteuthis and Lagonibelus (family Cylindroteuthidae). The studied bivalves are represented by Gryphaea (family Gryphaeidae) and Trigonia (family Trigonidae).

Fig. 2. Palaeogeography of the Early Oxfordian in Europe (after Ziegler, 1990 and Thierry et al., 2000a,b; modified according to the data of Gaździcka, 1998; Golonka, 2004; Sazonova and Zaznov, 1967, Świderska et al., 2008); MS — Mezen strait. PS — Pechora strait. Areas of isotope studies (referred in Sections 7.1. and 7.3.): D — Dorset, EF&WS — eastern France and western Switzerland, IS — Isle of Skye, PJC — Polish Jura Chain. Localities studied for variations in ammonite assemblage (referred in Section 7.2.): 1 — Mikhailov, Russia, 2 — Sengenthal, Germany, 3 — SE Basin, France, 4 — Uzelot, France.

The sediments yielded ammonites, belemnites and bivalves. The collected ammonites are represented by Quenstedtoceras, Cardioceras and Vertumniceras (family Cardioceratidae), Easipodoceras and Peltoceras (family Aspidoceratidae), Sublunloceras (family Oppeliidae). The belemnites belong to the genera: Hibolithes (family Belemnopsidae), Cylindroteuthis and Lagonibelus (family Cylindroteuthidae). The studied bivalves are represented by Gryphaea (family Gryphaeidae) and Trigonia (family Trigonidae).

Thin sections prepared from calcitic belemnite rostra and bivalve shells were studied by means of cathodoluminescence microscopy. All-dimensional fragments of belemnite rostra were powdered and homogenized in order to get average isotope values. Aliquots of the carbonate powders were used for the trace element and the isotole analysis. Trace element contents (Ca, Mg, Sr, Mn, Fe) were determined using a Perkin-Elmer Optima 5300 DV ICP-OES spectrometer after dissolving the carbonate powders in 5% hydrochloric acid. Overall reproducibility of ICP-OES analyses (1σ) was checked by replicate analysis (n = 31) of sample R144b and was better than ±0.41‰ for Ca, ±14 ppm for Mg, ±23 ppm for Sr, ±2 ppm for Fe and ±3 ppm for Mn.

Powdered and homogenized parts of aragonitic shells (including fragments of external walls of adult portions of ammonite shells and fragments of trigonoid shells) were screened for a potential contribution of diagenetic calcite using X-ray diffraction method. 1–2 subsamples taken from each specimen were studied. Powdered samples were scanned from 28° to 63° 2θ using DB Advance Bruker AXS diffractometer with CoKα radiation and Fe filter. X-ray diffractograms were examined for the strongest reflections of the calcite and aragonite phases. Quantitative estimation of the mineral phases was performed by Rietveld analysis using the Topas software. The preservation state of the original microstructure of pure aragonitic (>99%) shells was examined with a scanning electron microscope (SEM).

Carbonate samples were reacted with 100% H3PO4 at 70 °C in an online, automated carbonate reaction device (Kiel IV) connected to a Finnigan Mat Delta Plus mass spectrometer at the Institute of Geological Sciences and the Institute of Palaeobiology, Polish Academy of Sciences in Warsaw. Isotopic ratios were referenced to NBS19 international standard (δ13C=1.95‰, δ18O = −2.20‰). The oxygen isotope composition of aragonite was calculated from the δ18O value of evolved CO2 using the acid fractionation factor of 1.00883, which is the estimated value of the conventional acid fractionation factor for aragonite at 70 °C (conventional αCO2,aragonite amounts to 1.01034 at 25 °C; see Friedman and O’Neil, 1977). Its estimated value for 70 °C was calculated using the temperature dependence of the factor given by Kim et al., 2007 although the absolute, revised values of the factor reported by Kim et al., 2007 differ from conventional ones). All oxygen and carbon isotope results are reported in δ notation in per mil relative to the VPDB international standard. Reproducibility (1σ) of isotope measurements was checked by replicate analysis...

\[
10^3 \ln \alpha_{calcite-water} = 2.78 \times 10^6 / T^2 - 2.89
\]

where \(\alpha_{calcite-water} \) is equilibrium fractionation factor between calcite and water, \(T \) is the temperature in Kelvin. Temperatures calculated for the measured range of \(\delta^{18}O \) values using the equation of O’Neil et al. (1969) modified by Friedman and O’Neil (1977) are 0.4 to 1.3 °C lower than the temperatures calculated using the equation of Epstein et al. (1953) corrected by Craig (1965) and modified by Anderson and Arthur (1983). The latter equation, albeit frequently used for skeletal calcite, is based on aragonite-calcitic mollusc shells (see Epstein et al., 1953) and therefore was not employed in the present study. Palaeotemperatures from aragonite fossils were calculated using the corrected version (2) of the equation of Grossman and Ku (1986) established for “mollusks”. The equation of Grossman and Ku (1986) had to be standardized to the SMOW scale as the original \(\delta^{18}O \) values of ambient water were reported vs. “average marine water” being 0.2‰ depleted in \(^{18}O \) in comparison to the SMOW (cf. Grossman and Ku, 1986).

\[
T(\degree C) = 21.8 - 4.69 \times (\delta^{18}O_{aragonite} - (\delta^{18}O_{water} - 0.2))
\]

where \(\delta^{18}O_{aragonite} \) is the isotope composition of shell aragonite vs. PDB and \(\delta^{18}O_{water} \) is the isotope composition of ambient water vs. SMOW. Precision of calculated temperatures (2σ) as resulted from the propagation of the error of oxygen isotope analyses is close to ±0.5 °C.

5. Diagenetic alteration

Cementation and re-crystallization processes may alter the isotope composition of calcareous fossils. The assessment of the degree of diagenetic alteration of calcitic belemnite rostra and Gryphaea shells can be made using trace element concentrations. Diagenetic alteration often causes an increase in Fe and Mn concentrations in calcite as these elements become soluble under reducing conditions. Conversely, Sr contents in marine calcites decrease during diagenesis as Sr concentrations are relatively high in seawater and low in majority of diagenetic fluids (Marshall, 1992; Veizer, 1974, 1983). Mn\(^{2+}\) is also found to be a main activator of orange-red cathodoluminescence which is distinctive of diagenetically altered calcites (Marshall, 1992; Savard et al., 1995).

All Gryphaea shells were not further investigated as they showed dull to intensive orange-red luminescence (Fig. 4A) with broad spectral emission peaks from 560 to 645 nm that are considered to be activated by Mn\(^{2+}\) ions (Boggs and Krinsley, 2006). Belemnite rostra were largely non-luminescent, albeit some degree of luminescence was often found at rostrum rims and in apical line areas (Fig. 4B,C). The small luminescence parts of the rostra were removed during sample preparation. Most of the non-luminescent rostra show low Fe (<150) and Mn (<100 ppm) concentrations that characterize well-preserved samples (Table 1), (cf. Price and Rogov, 2009). The \(\delta^{18}O \) and \(\delta^{13}C \) values of two samples (R43, R123) showing elevated Fe and Mn contents were eliminated from the dataset. The Sr concentrations in the non-luminescent belemnite rostra range from 790 ppm to 1050 ppm for cylindroteuthids and from 1000 ppm to 1370 ppm for belemnopseids (Table 1). Although it is generally assumed that critical threshold level of Sr concentrations for pristine belemnite rostra is 900 to 950 ppm (Rosales et al., 2001, 2004) the published data are derived from Tethyan belemnites. It is possible that Boreal cylindroteuthid species, which inhabited Russian Platform, were characterized by different metabolic fractionation and had lower primary Sr contents than Tethyan belemnites such as belemnopseids. In addition, Veizer (1974) reported Sr concentrations of 800 and 1600 ppm in well-preserved belemnite...
rostra. We therefore assume the threshold level of 800 ppm as distinctive of well-preserved specimens. The $\delta^{18}O$ and $\delta^{13}C$ values of one sample (R131) showing lower Sr contents were eliminated from the dataset.

The preservation of metastable aragonite is uncommon within Jurassic deposits and it is often assumed that pure aragonitic fossils are well-preserved. Diagenetic alteration of the microstructure of aragonitic ammonite and bivalve shells was, however, observed (Buchardt and Weiner, 1981; Dauphin and Denis, 1990, 1999; Wierzbowski and Joachimski, 2007). All ammonoid and trigoniid (Buchardt and Weiner, 1981; Dauphin and Denis, 1990, 1999) aragonitic ammonite and bivalve shells was, however, observed

$\delta^{18}O$ and $\delta^{13}C$ values oscillate between +1.7 and $+3.8\%$ (average +0.9\%, Table 1, Fig. 7). The average $\delta^{18}O$ value of the microstructure were excluded from palaeoenvironmental studies.

Interestingly, aragonitic ammonite samples with altered microstructures show a significant scatter of $\delta^{18}O$ values (-1.7 to $+1.5\%$; Fig. 6). Samples revealing no evidence of the alteration show in contrast a much narrower range of $\delta^{18}O$ values (-0.1 to $+1.3\%$; Fig. 6). A negative correlation ($r=0.43$) significant at the 5% level between $\delta^{18}O$ values and $\delta^{13}C$ values of the altered ammonite samples is observed. We argue as a consequence that the preservation of the primary aragonitic mineralogy is not sufficient to characterize the shells as well-preserved. This is consistent with conclusion of Wierzbowski and Joachimski (2007) and implies that ammonite isotope data presented without detailed information on the microstructure preservation should be treated with caution.

6. Results

6.1. Oxygen and carbon isotopes

The $\delta^{18}O$ values of cylindroteuthid rostra (Cylindroteuthis and Lagonibelas) vary from $+0.6$ to $+2.4\%$ (average 1.7%, Table 1, Fig. 7). The $\delta^{18}O$ values of belemnopseid rostra (Hibolithes) vary from $+0.2$ to $+1.2\%$ (average 0.9%, Table 1, Fig. 7). The average $\delta^{18}O$ value of cylindroteuthids is higher by about 0.8% than the value of belemnopseids. Both groups of belemnites are patchily distributed across the studied section. Cylindroteuthids are present in the lower section part and disappear completely starting from the upper part of the Praecordatum Subzone of the Mariae Zone. One of two layers with abundant cylindroteuthid rostra comprising the middle part of the Praecordatum Subzone of the Mariae Zone is in turn characterized by the scarcity of belemnopseids. Observed temporal variations in the $\delta^{18}O$ values of belemnite rostra are as a result predominantly connected with changing abundances of both belemnite groups.

The cylindroteuthid $\delta^{13}C$ values oscillate between $+1.5\%$ and $+3.8\%$ (average 2.6%, Table 1, Fig. 8). The belemnopseid $\delta^{13}C$ values oscillate between $+1.7\%$ and $+3.4\%$ (average 2.6%, Fig. 8). The belemnite $\delta^{13}C$ values from the entire study interval show a significant scatter. No temporal trend is visible in the belemnite $\delta^{13}C$ values. The belemnite $\delta^{18}O$ and $\delta^{13}C$ values are not correlated (Fig. 9).

The $\delta^{18}O$ and the $\delta^{13}C$ values of well-preserved ammonite shells, which only occur in the lower section part, range from -0.1 to $+1.3\%$ (average $+0.7\%$) and $+1.4$ to $+4.9\%$ (average $+3.3\%$, respectively (Figs. 6–8, and Table 2). The cardioceratid ammonites (genera: Quenstedtoceras, Cardioceras and Vertumniceras) show higher $\delta^{18}O$ values (between $+0.3$ and $+1.3\%$, average 0.8%) and higher and more scattered $\delta^{13}C$ values (between $+2.0$ and $+4.9\%$, average 3.4%) compared to the $\delta^{18}O$ values (-0.1 and $+0.9\%$, average 0.3%) and $\delta^{13}C$ values ($+1.4$ and $+2.8\%$, average 2.2%) of oppeliid ammonites (genus Sublimuloceras). No correlation between the $\delta^{18}O$ and the $\delta^{13}C$ values of the well-preserved ammonite shells is observed (Fig. 6).

6.2. Mg/Ca and Sr/Ca ratios

Mg/Ca ratios of belemnite rostra vary between 4.2 and 20.4 mmol/mol (Fig. 10). Sr/Ca ratios of belemnite rostra vary between 1.0 and 1.7 mmol/mol (Fig. 11). Belemnopseid rostra show higher Mg/Ca (8.9 to 20.4) and Sr/Ca ratios (1.2 to 1.7) than cylindroteuthid rostra (4.2 to 9.6 and 1.0 to 1.2, respectively). Mg/Ca and Sr/Ca ratios of both groups of belemnites do not correlate with their $\delta^{18}O$ values (Figs. 10, 11).
7. Discussion

7.1. Oxygen isotopes, Mg/Ca and Sr/Ca ratios

Dis-equilibrium fractionation of oxygen isotopes during precipitation of biogenic carbonates is caused by a kinetic effect, which relies on the discrimination against heavy oxygen and carbon isotopes during hydration and hydroxolation of CO₂ (McConnaughey, 1989; McConnaughey et al., 1997). Kinetic isotope fractionation is consequently reflected in a simultaneous depletion in δ¹⁸O and δ¹³C isotopes and a significant linear correlation of δ¹⁸O and δ¹³C values. A lack of such correlations in our data sets (cf. Figs. 6, 9) suggests that belemnite rostra and ammonite shells were precipitated in the oxygen isotopic equilibrium with seawater.

Belemnite calcite is normally considered to have been precipitated in oxygen isotope equilibrium with ambient seawater (Niebuhr and Joachimski, 2002; Price and Rogov, 2009; Price and Sellwood, 1997; Rosales et al., 2004; Sælen et al., 1996; Wierzbowski, 2002; Wierzbowski and Joachimski, 2007). This assumption is substantiated by equilibrium precipitation of oxygen isotopes in the cuttlebone of modern Sepia, which
Table 2

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Position (m)</th>
<th>Subzone</th>
<th>Taxonomy</th>
<th>Microstructure</th>
<th>$\delta^{18}O$ (%)</th>
<th>$\delta^{13}C$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7/84</td>
<td>6</td>
<td>Scarburgense/Praecordatum</td>
<td>Cardioceras ?</td>
<td>Altered</td>
<td>1.46</td>
<td>3.92</td>
</tr>
<tr>
<td>R146/1</td>
<td>5.8</td>
<td>Scarburgense</td>
<td>Cardioceras ?</td>
<td>Altered</td>
<td>−0.07</td>
<td>3.61</td>
</tr>
<tr>
<td>R146/2</td>
<td>5.8</td>
<td>Scarburgense</td>
<td>Cardioceras ?</td>
<td>Altered</td>
<td>0.06</td>
<td>3.45</td>
</tr>
<tr>
<td>R48/1</td>
<td>5.75</td>
<td>Scarburgense</td>
<td>Cardioceras ?</td>
<td>Well-preserved</td>
<td>1.07</td>
<td>2.7</td>
</tr>
<tr>
<td>R48/2</td>
<td>5.75</td>
<td>Scarburgense</td>
<td>Cardioceras ?</td>
<td>Well-preserved</td>
<td>0.89</td>
<td>2.62</td>
</tr>
<tr>
<td>R127/1</td>
<td>5.75</td>
<td>Scarburgense</td>
<td>ammonite</td>
<td>Altered</td>
<td>0.43</td>
<td>4.1</td>
</tr>
<tr>
<td>R127/2</td>
<td>5.75</td>
<td>Scarburgense</td>
<td>ammonite</td>
<td>Altered</td>
<td>0.43</td>
<td>4.05</td>
</tr>
<tr>
<td>R139</td>
<td>5.75</td>
<td>Scarburgense</td>
<td>Cardioceras sp.</td>
<td>Well-preserved</td>
<td>0.93</td>
<td>3.28</td>
</tr>
<tr>
<td>R140</td>
<td>5.65</td>
<td>Scarburgense</td>
<td>Vertumniceras sp.</td>
<td>Well-preserved</td>
<td>0.65</td>
<td>4.86</td>
</tr>
<tr>
<td>R51</td>
<td>5.55</td>
<td>Scarburgense</td>
<td>Cardioceras sp.</td>
<td>Well-preserved</td>
<td>0.41</td>
<td>2.67</td>
</tr>
<tr>
<td>R133/2</td>
<td>5.35</td>
<td>Scarburgense</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>−0.05</td>
<td>3.36</td>
</tr>
<tr>
<td>R105a/1</td>
<td>5.25</td>
<td>Scarburgense</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>0.09</td>
<td>3.74</td>
</tr>
<tr>
<td>R105a/2</td>
<td>5.25</td>
<td>Scarburgense</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>0.17</td>
<td>3.51</td>
</tr>
<tr>
<td>R51</td>
<td>5.25</td>
<td>Scarburgense</td>
<td>Cardioceras sp.</td>
<td>Well-preserved</td>
<td>0.12</td>
<td>4.09</td>
</tr>
<tr>
<td>R105b/1</td>
<td>5.25</td>
<td>Scarburgense</td>
<td>Trigonia sp.</td>
<td>Altered</td>
<td>0.29</td>
<td>3.35</td>
</tr>
<tr>
<td>R105b/2</td>
<td>5.25</td>
<td>Scarburgense</td>
<td>Trigonia sp.</td>
<td>Altered</td>
<td>0.61</td>
<td>3.59</td>
</tr>
<tr>
<td>R82</td>
<td>5.2</td>
<td>Lambertia</td>
<td>Cardioceras sp.</td>
<td>Well-preserved</td>
<td>1.01</td>
<td>4.09</td>
</tr>
<tr>
<td>R122/1</td>
<td>5.2</td>
<td>Lambertia</td>
<td>Cardioceras sp.</td>
<td>Well-preserved</td>
<td>0.95</td>
<td>1.95</td>
</tr>
<tr>
<td>R55/1</td>
<td>5.15</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>0.25</td>
<td>3.94</td>
</tr>
<tr>
<td>R55/2</td>
<td>5.15</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>−0.09</td>
<td>3.72</td>
</tr>
<tr>
<td>R70/1</td>
<td>5.15</td>
<td>Lambertia</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>0.24</td>
<td>3.83</td>
</tr>
<tr>
<td>R70/2</td>
<td>5.15</td>
<td>Lambertia</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>0.26</td>
<td>3.45</td>
</tr>
<tr>
<td>R107/1</td>
<td>5.15</td>
<td>Lambertia</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>0.10</td>
<td>3.75</td>
</tr>
<tr>
<td>R107/2</td>
<td>5.15</td>
<td>Lambertia</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>1.04</td>
<td>3.88</td>
</tr>
<tr>
<td>R44/1</td>
<td>5</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>0.37</td>
<td>3.71</td>
</tr>
<tr>
<td>R57/1</td>
<td>4.85</td>
<td>Lambertia</td>
<td>Trigonia sp.</td>
<td>Altered</td>
<td>0.63</td>
<td>3.49</td>
</tr>
<tr>
<td>R57/2</td>
<td>4.85</td>
<td>Lambertia</td>
<td>Trigonia sp.</td>
<td>Altered</td>
<td>0.53</td>
<td>3.75</td>
</tr>
<tr>
<td>R112/1</td>
<td>4.85</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>0.88</td>
<td>4.29</td>
</tr>
<tr>
<td>R112/2</td>
<td>4.85</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>1.02</td>
<td>4.27</td>
</tr>
<tr>
<td>R73/1</td>
<td>4.75</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>−1.09</td>
<td>2.65</td>
</tr>
<tr>
<td>R73/2</td>
<td>4.75</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>1.03</td>
<td>2.74</td>
</tr>
<tr>
<td>R93/1</td>
<td>4.75</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Well-preserved</td>
<td>1.29</td>
<td>3.92</td>
</tr>
<tr>
<td>R108</td>
<td>4.75</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>0.49</td>
<td>3.61</td>
</tr>
<tr>
<td>R49/1</td>
<td>4.65</td>
<td>Lambertia</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>−1.56</td>
<td>3.91</td>
</tr>
<tr>
<td>R49/2</td>
<td>4.65</td>
<td>Lambertia</td>
<td>Eupagoceras sp.</td>
<td>Altered</td>
<td>1.68</td>
<td>3.87</td>
</tr>
<tr>
<td>R54</td>
<td>4.45</td>
<td>Lambertia</td>
<td>Trigonia sp.</td>
<td>Altered</td>
<td>0.55</td>
<td>3.9</td>
</tr>
<tr>
<td>R100</td>
<td>4.3</td>
<td>Lambertia</td>
<td>Sahlumaliceras sp.</td>
<td>Well-preserved</td>
<td>0.88</td>
<td>2.77</td>
</tr>
<tr>
<td>R97</td>
<td>4.25</td>
<td>Lambertia</td>
<td>Alicoceras sp.</td>
<td>Altered</td>
<td>−0.66</td>
<td>3.61</td>
</tr>
<tr>
<td>R119</td>
<td>4.25</td>
<td>Lambertia</td>
<td>Sahlumaliceras sp.</td>
<td>Well-preserved</td>
<td>−0.09</td>
<td>4.41</td>
</tr>
<tr>
<td>R111/1</td>
<td>4.15</td>
<td>Lambertia</td>
<td>Sahlumaliceras sp.</td>
<td>Well-preserved</td>
<td>0.18</td>
<td>2.27</td>
</tr>
<tr>
<td>R111/2</td>
<td>4.15</td>
<td>Lambertia</td>
<td>Sahlumaliceras sp.</td>
<td>Well-preserved</td>
<td>0.13</td>
<td>2.17</td>
</tr>
<tr>
<td>R47</td>
<td>3.55</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>−0.64</td>
<td>4.10</td>
</tr>
<tr>
<td>R94/1</td>
<td>3.3</td>
<td>Lambertia</td>
<td>Peltoceras sp.</td>
<td>Altered</td>
<td>0.06</td>
<td>3.18</td>
</tr>
<tr>
<td>R94/2</td>
<td>3.3</td>
<td>Lambertia</td>
<td>Peltoceras sp.</td>
<td>Altered</td>
<td>0.03</td>
<td>3.00</td>
</tr>
<tr>
<td>R88</td>
<td>3.2</td>
<td>Lambertia</td>
<td>Quenstedtoceras sp.</td>
<td>Altered</td>
<td>0.59</td>
<td>4.31</td>
</tr>
</tbody>
</table>

is a close relative of belemnites (Bettencourt and Guerra, 1999; Rexford and Mutterlose, 2006; Wefer and Berger, 1991). Belemnospoid and cylindrothecoid belemnites are interpreted to have been nektobenthic as their oxygen isotope records are similar to the records of brachiopods and bivalves (Anderson et al., 1994; Wierzbowski, 2002; Wierzbowski and Joachimski, 2007). Studies of recent Nautilus, a relative of ammonites, prove that their oxygen isotope composition is a reliable proxy for the temperature of ambient seawater (Auclair et al., 2004; Landman et al., 1994; Taylor and Ward, 1983). Jurassic ammonites are commonly interpreted to have lived nektobically in the upper part of the water column based on isotope data (Anderson et al., 1994; Lécuyer and Bucher, 2006; Lukeneder et al., 2010; Martil et al., 1994). A near-surface water habitat is also suggested for the members of the Families Cardioceratidae and Oppeliidae (Price and Page, 2008; Wierzbowski and Joachimski, 2007). The migration of ammonites into shallower and warmer waters during adult life stages has been recently suggested based on internal variations in ammonite isotope ratios (Lukeneder et al., 2010). The oxygen isotope ratio of studied adult portions of ammonite shells is hence interpreted to be an indicator of the temperature of the upper part of the water column.

Mg/Ca and Sr/Ca ratios of the studied groups of belemnites do not correlate with their $\delta^{18}O$ values (Figs. 10, 11). The absence of the observable correlation may result from the relatively narrow range of $\delta^{18}O$ values measured from specimens of each belemnite group. However, the significant scatter of Mg/Ca ratios of Hibolithes probably points to a major role of the biofractionation effects on this ratio. The rostra of Hibolithes were reported to show no or only a weak relation between Mg/Ca and oxygen isotope ratios as well as higher Mg contents than the other belemnite genera (McArthur et al., 2004, 2007b). Significant correlation was in contrast observed between both Mg/Ca and Sr/Ca ratios and $\delta^{18}O$ values of other Jurassic and Cretaceous belemnites (cf. McArthur et al., 2000, 2004, 2007a,b; Rosales et al., 2004).

Palaeotemperatures were calculated from $\delta^{18}O$ values of well-preserved cephalopod shells assuming normal marine salinity of the sea in the Saratov area and the $\delta^{18}O$ value of Jurassic seawater to have been −1‰ SMOW as distinctive of an ice-free world (Shackleton and Kennett, 1975). The normal marine salinity was assumed owing to the presence of a stenohaline benthic fauna. Palaeotemperatures calculated for cylindrothecoid belemnites vary from 2.3 to 9.1 °C (average 5 °C). Palaeotemperatures calculated for belemnospoid belemnites vary from 6.8 to 10.7 °C (average 8 °C). Ammonite palaeotemperatures range from 10.1 to 16.6 °C (average 13 °C) although a difference is observed between the temperatures calculated for the cardioceratid (average 12 °C) and the oppeliid ammonites (average 15 °C). It is highly improbable that the low temperatures calculated from nektobenthic belemnites were overestimated owing to a decrease in salinity and
seawater δ18O value. The presence of 18O-enriched seawater is, on the contrary, incompatible with a cool climate. Despite the presence of the stenohaline benthic fauna and the scarcity of the land-derived material the near-surface waters of the basin may have been affected by salinity variations. A decrease in surface water salinity and δ18O value due to the freshwater influx could result in the overestimation of the palaeotemperatures reconstructed from δ18O values of nektic ammonites. The calculated temperature gradient between nektobenthic belemnites (Hibolites) and nektic ammonites from Dubki is however similar or lesser than the same gradients noted in other Middle–Late Jurassic epicontinental basins of Europe (cf. Anderson et al., 1994; Price and Page, 2008; Wierzbowski and Joachimski, 2007). This may show that the effect of a decrease in surface water salinity on calculated ammonite temperatures is negligible.

The difference in the palaeotemperatures calculated from co-occurring cylindroteuthid and belemnopseid rostra (about 3 °C) may indicate that both nektobenthic belemnite groups inhabited different depth habitats and are found in the same place due to occasional migrations (e.g. for spawning) or as a result of predation. Alternative explanation of belemnite temperature record may be differences in seasonal calcification between cylindroteuthid and belemnopseid belemnites. Slowdown or cessation of growth of belemnopseid rostra during cooler months may account for the observed differences in the belemnite temperature record. Cylindroteuthids are most abundant in two layers (the boundary of the Lamberti and the Mariae Zones and the middle part of the Praecordatum Subzone of the Mariae Zone) and disappear completely starting from the upper part of the Praecordatum Subzone of the Mariae Zone in Dubki. Belemnopseids show higher water temperatures and occur almost continuously throughout the studied interval. Despite the discontinuous occurrence of cylindroteuthids in the studied section the palaeotemperatures calculated for belemnopseids do not change. The same applies to palaeotemperatures calculated from cylindroteuthids in one layer characterized by a scarcity of belemnopseids. These facts likely indicate that both belemnite groups lived separately and inhabited different depths. A similar situation is observed in some areas of modern oceans where different depths and water masses are inhabited by squids of boreal and tropical origin (Arkhipkin and Laptikhovsky, 2006). The belemnites likely did not tolerate a change in environmental conditions. In a case of the change some of them became scarce or disappeared. Two episodes with abundant cylindroteuthids may represent colder periods or periods of the increased flux of cold bottom waters. The retreat of cylindroteuthids may have resulted from the disappearance of cold bottom waters.

The highest temperatures deduced from ammonite δ18O values are interpreted to record temperatures of near-surface waters. The average temperature (12 °C) for cardioceratids, which were collected from the uppermost part of the Lamberti Subzone of the Lamberti Zone and the Scarburgense Subzone of the Cordatum Zone, and the
average temperature (15 °C) for oppeliids, which were collected from the lower part of the Lamberti Subzone of the Lamberti Zone, differ either due to partly different lifestyles of two ammonite groups or temporal changes in the temperatures of near-surface waters.

Low temperatures (3–10 °C; the temperatures were recalculated using O’Neil et al.’s, 1969 equation modified by Friedman and O’Neil, 1977) deduced from oxygen isotope composition of uppermost Callovian–lowermost Oxfordian belemnite rostra from the Russian Platform were given as an evidence for global cooling and glaciation at the Middle–Upper Jurassic transition (Dromart et al., 2003a; Price and Rogov, 2009). The present data, however, show a vertical thermal gradient in the water column in the south-central part of the Middle Russian Sea at the Middle–Late Jurassic transition (late Lamberti and early Mariae chron). The temperatures of deep bottom waters of the sea were likely close to 5 °C (average for cylindroteuthids) being similar to the temperature of modern intermediate waters, which form in cool subpolar regions. Near-surface waters of the sea were likely much higher and averaged 12–15 °C although one cannot completely exclude that the temperatures are slightly overestimated due to a decrease in salinity and δ¹⁸O value of surface water.

The calculated temperatures of sea-bottom waters of the Middle Russian Sea near Saratov (cylindroteuthid and belemnopsisid averages of 5 and 8 °C) are lower than the average belemnite temperatures (11 and 12 °C) reported from the Lamberti and the Bukowski subzones of the Lamberti and the Cordatum zones, respectively, from the Polish Jura Chain (Wierzbowski et al., 2009); the belemnite average temperature (12 °C, the temperature was recalculated using O’Neil et al.’s, 1969 equation modified by Friedman and O’Neil, 1977) of the Lamberti and the Mariae zones from Dorset in England (Price and Page, 2008) and a little lower than the belemnite average temperatures (7 and 10 °C, the temperatures were recalculated using O’Neil et al.’s, 1969 equation modified by Friedman and O’Neil, 1977) of the
Mariae Zone and the Bukowskii Subzone of the Cordatum Zone, respectively, from the Isle of Skye in Scotland (Nunn et al., 2009). The calculated near-surface temperatures of the sea of the Middle Russian Sea (cardioceratid and oppelisid averages of 12 and 15 °C) are in turn lower than the cardioceratid average temperature (16 °C, the temperature were recalculated using the equation of Grossman and Ku, 1986 established for “mollusks”) of the Lamberti and the Mariae Zones from Dorset in England (Price and Page, 2008) and the temperatures (17 and 19 °C, the postulated ice-effect on seawater δ¹⁸O value was rejected; cf. Wierzbowski et al., 2009) of surface or near-surface waters obtained from nektonic fish teeth of the Lamberti–Mariae zones from eastern France and western Switzerland (Dromart et al., 2003a,b).

The review of presented data shows climatic zonation in European seas at the Middle–Late Jurassic transition. The Middle Russian Sea was likely affected by the circulation of cold bottom waters during the latest Callovian and the earliest Oxfordian and predominantly settled by Boreal–Subboreal ammonite fauna. The cold bottom waters might have temporarily spread to the area of Scotland, which was settled as well by Boreal–Subboreal fauna, especially during the Mariae Chron (cf. Nunn et al., 2009) but did not spread further to the south to the areas of Dorset and the Polish Jura Chain (see Fig. 2) as shown with higher temperatures calculated from δ¹⁸O values of belemnite rostra from these regions (cf. Price and Page, 2008; Wierzbowski et al., 2009). The latter regions were characterized by more diverse ammonite fauna of Subboreal and Submediterranean affinities (Matyja and Gîżejewska, 1979; Page et al., 2009). The cold bottom waters may have originated in cool Arctic regions during the Jurassic (cf. Sellwood and Valdes, 2008) and affected the Middle Russian Sea flowing through the relatively wide Mezen–Pechora straits (Fig. 2). Despite low temperatures of bottom waters the temperatures of near-surface waters of the Middle Russian Sea were likely higher than it was previously assumed.

Fig. 8. Stratigraphy and δ¹³C values of well-preserved belemnite rostra and ammonite shells from the Dubki section and literature δ¹³C data. Uniformly grey area corresponds to belemnite δ¹³C values from the Polish Jura Chain, Poland (after Wierzbowski et al., 2009), lower striped area corresponds to belemnite δ¹³C values from Dorset, England (after Price and Page, 2008), upper striped area corresponds to belemnite δ¹³C values from the Isle of Skye, Scotland (after Nunn et al., 2009).
7.2. Variations in faunal assemblages and palaeoclimate

Variations in the distribution of belemnites in the Dubki section only partially correlate with quantitative variations in ammonite assemblages. A cylindroteuthid-dominated interval at the boundary of the Lamberti and the Mariae Zones corresponds well to the maximal increase in the percentage of Boreal cardioceratids in Dubki at the Callovian–Oxfordian transition (Figs. 7, 12). The increase in the number of cardioceratid ammonites at the Callovian–Oxfordian transition is widely known and observed e.g. in the Mikhailov section of Ryazan region of Russia and in France (Fortwengler et al., 1997; Vidier et al., 1993; Figs. 2, 12). A higher interval with abundant cylindroteuthids in the Praecordatum Subzone of the Mariae Zone in the Dubki section correlates, on the contrary, with a slight retreat of cardioceratids and a slight increase in the percentage of aspidoceratids and perisphinctids (Figs. 7, 12). The cardioceratid-dominated interval at the base of the Bukowskii Subzone of the Cordatum Zone in Dubki is in turn characterized by the total lack of cylindroteuthids and scatter findings of Hibolithes (Figs. 7, 12). The absence of a direct correlation between the belemnite distribution (and the belemnite isotope record) and relative abundances of Boreal cardioceratid ammonites in the Dubki section could be explained by different depth habitats of ammonites and belemnites as discussed above.

Interestingly, the uppermost part of the Dubki section, belonging to the baccatum horizon of the Bukowskii Subzone of the Cordatum Zone, is marked by sudden increase in the number of Mediterranean oppeliid ammonites (Fig. 12). The Taramelliceras-dominated assemblage (up to ~90%) of the baccatum horizon of the Dubki section is unique to the Lower Oxfordian of the whole Subboreal Province. A similar Taramelliceras-dominated assemblage has only been recognized in the Cordatum Subzone of the Cordatum Zone of SE France (Quereilhac et al., 2009). In central Poland Taramelliceras only attain ~18% of the whole ammonite assemblage of the Cordatum Zone (Tarkowski, 1990). Lower Oxfordian oppeliid ammonites were reported from Mangyshlak (Repin and Rashvan, 1996) and from Samara region of the Volga Basin (Sintzov, 1888) but in the Moscow area these ammonites become very rare. Mass occurrence of Taramelliceras in the baccatum horizon of the Dubki section may be linked to the influence of southern water current. The onset of oppeliids in Dubki and significant retreat of cardioceratids from this section are preceded by the retreat of cylindroteuthid belemnites, which disappear in the upper part of the Praecordatum Subzone of the Mariae Zone. The changes in belemnite and ammonite fauna are likely concomitant with major perturbations in ostracod assemblage observed in the upper part of the Dubki section by Tesakova (2008). They may arise because of changing environment conditions and the shallowing of the basin (cf. Tesakova, 2008). Unfortunately, the lack of well-preserved ammonite shells in the upper part of the Dubki section (upper part of the Mariae Zone and the Cordatum Zone) disables the reconstruction of the temperature of near-surface waters.

The existence of a prolonged period of global glaciation at the Middle–Late Jurassic transition was recently questioned by Wierzbowski et al. (2009) but a shorter cooling period might have occurred during the Mariae Chron (cf. Nunn et al., 2009; Wierzbowski et al., 2009). It is also possible that a specific sea water circulation during the latest Callovian–earliest Oxfordian sea-level highstand (cf. Hallam, 2001; Norris and Hallam, 1995; Wierzbowski et al., 2009) may have resulted in the
incursion of Arctic waters into the Middle Russian Sea and the appearance of a cold bottom current flowing southward to the Tethys (Fig. 2). This current may have disappeared during the Early–Middle Oxfordian as a result of marine regression and the appearance of barriers preventing water exchange. The shallowing and the change in water circulation in the Saratov area of the Middle Russian Sea during the Early Oxfordian were likely accompanied by the reduction in the abundance and the homogeneity of ostracod assemblage (Tesakova, 2008), the retreat of cylindroteuthid belemnites and the onset of oppeliid ammonites. The gradual shallowing and an increased flux of freshwater may have also led to a strong rise of temperatures calculated from belemnite δ¹⁸O values of the Russian Platform in the Oxfordian (cf. Dromart et al., 2003a; Price and Rogov, 2009; Riboulleau et al., 1998). The Oxfordian is marked by a global sea-level fall that occurred after latest Callovian–earliest Oxfordian maximal flooding event (cf. Hallam, 2001; Norris and Hallam, 1995; Wierzbowski et al., 2009). A regressive event was also observed in the latest Early Oxfordian of the Russian Platform although the sea-level fluctuations in this area were considered to be more complex (Sahagian et al., 1996).

It is to emphasise that there is no evidence for the glaciation in northern Siberia and NE Asia at the Callovian–Oxfordian transition as postulated by Dromart et al. (2003a,b). Chumakov and Frakes (1997) showed that Callovian–Oxfordian sediments of the NE Asia, attributed previously to ice-rafting, consist of gravity driven material. Worth noting is also the distribution of glendonites (calcitic pseudomorphs after ikaite) in the Jurassic of Northern Siberia and NE Asia located in the proximity to the palaeo-North Pole. Glendonites are considered to be associated with coldwater-glacial depositional systems as ikaite decomposes rapidly above 4 °C (Selleck et al., 2007).

Chumakov and Frakes (1997) mentioned another occurrence of glendonites close to the Callovian–Oxfordian transition from the Koster Formation (Artyk river, NE Asia). Unfortunately ammonites from this formation were not figured or described. The macrocephalitid ammonites reported from the upper part of the Koster Formation (Paraketsov and Paraketsova, 1989) suggests, however, its early Bathonian age, because only the ammonites of the Arctocephalites–Arcticoceras lineage, which may be misidentified with macrocephalitids, are present in this area (cf. Kiselev and Rogov, 2007).

The same applies to the reported presence of Quenstedtoceras in the Koster Formation (cf. Paraketsov and Paraketsova, 1989) as true Quenstedtoceras, except for Q. (Soaniceras) that can be easily distinguished from Quenstedtoceras s.s., are unknown from NE Asia (see Meledina, 1994). It
is therefore possible that some microconchs of Bathonian or Callovian cardioceratids (*Pseudocadoceras* s.l.) were misidentified with *Quenstedtoceras*, which led to improper dating of the NE Asia sediments.

7.3. Carbon isotopes

Metabolic fractionation of carbon isotopes was reported for modern Sepia (*Bettencourt and Guerra, 1999; Rexfort and Mutterlose, 2006*). The study of Wierzbowski (*2002*) showed a constant offset in δ¹³C values of 2.5 to 3‰ between coeval belemnite and brachiopod calcite with the belemnopseid rostra being depleted in ¹³C. Carbon isotope ratios of the belemnopseid belemnite rostra are hence interpreted to be affected by vital fractionation (*Wierzbowski, 2002; Wierzbowski and Joachimski, 2007*). Despite the metabolic effect the belemnite δ¹³C values are found to be a reliable proxy for temporal changes of the isotope composition of the dissolved inorganic carbon (DIC) in ancient seas (*cf. Gröcke et al., 2003; McArthur et al., 2000; Price et al., 2000; Rosales et al., 2001; Wierzbowski, 2002; Wierzbowski et al., 2004; Wierzbowski and Joachimski, 2007*).

Non-equilibrium carbon isotope fractionation was reported for the modern *Nautilus macromphalus* (*Auclair et al., 2004*). The offset from expected equilibrium values may be deduced from the mean δ¹³C value of shell aragonite (+0.5‰ VPDB; *Auclair et al., 2004*), the average δ¹³C value of seawater DIC (+0.5‰ VPDB; *Auclair et al., 2004*) and the aragonite–HCO₃⁻ carbon isotope fractionation of +2.7‰ (*Romanek et al., 1992*). The vital fractionation effect of around 2.7‰ is calculated with these values. The large metabolic bias in δ¹³C values of *N. macromphalus* implies that vital fractionation might have been effective as well during precipitation of ammonite shells. A significant scatter of coeval δ¹³C values of belemnite rostra and ammonite shells (Fig. 8) may result from short-lived temporal changes in the isotope composition of DIC in the epicontinental Middle Russian Sea or the presence of migratory cephalopod fauna. The variations in biologic productivity of the shallow Middle Russian Sea may account for the temporal changes in the isotope composition of DIC. The similarity in the δ¹³C values of belemnopseid and cylindroteuthid belemnites (the latter are a bit more scattered) indicates that both belemnite groups were characterized by similar metabolic bias of the carbon isotope composition. The δ¹³C values of cylindroteuthid and belemnopseid belemnites may thus be compared with each other.

The δ¹³C values of Russian belemnites, which range from +1.5‰ to +3.8‰ (average 2.6‰), are similar or significantly higher than the values of belemnopseid belemnites of the Lamberti Subzone of the Lamberti Zone (average of 1.7‰) and the Bukowskii Subzone of the Cordaturn Zone (average 0.4‰), respectively, from the Polish Jura Chain (*Wierzbowski et al., 2009; Fig. 8*). The δ¹³C values of Russian belemnites are comparable to the values of belemnopseid belemnites (average 2.0‰) of the Lamberti and the Mariae zones from Dorset in England (*Price and Page, 2008*) and very similar to the δ¹³C values of cylindroteuthid belemnites (averages of 2.4 and 3.0‰) of the Mariae Zone and the Bukowskii Subzone of the Cordatum Zone, respectively, from the Isle of Skye in Scotland (*Nunn et al., 2009; Fig. 8*). They also are similar to previously published carbon isotope data of the Lamberti and the Mariae zones from the Russian Platform (*cf. Barskov and Kiyashko, 2000; Podlaha et al., 1998*). 1–2‰ higher δ¹³C values of Lower Oxfordian belemnite rostra from Boreal–Subboreal sections in the Russian Platform and Scotland (when compared to belemnites from the Submediterranean ammonite province from Poland) indicate regional enrichment of DIC in ¹³C and the paucity of seawater mixing processes. An 1–2.5‰ offset in δ¹³C values between the belemnite rostra from the Submediterranean and the Boreal–Subboreal provinces was observed as well during the Oxfordian and the Early Kimmeridgian in Europe (*Wierzbowski, 2004*). Callovian–Oxford deposits from Boreal–Subboreal basins of Europe are organic-carbon rich. They are interpreted to have been deposited under high nutrient supply and/or conditions favourable for the preservation of organic matter (*Bushnev et al., 2006; Martill et al., 1994; Marynowski and Zatoń, 2010; Smirnova et al., 1999; Tyson et al., 1979*). The regional enrichment of DIC in ¹³C in restricted Boreal–Subboreal basins may thus be linked to the high organic matter productivity and/or burial under insufficient mixing of water masses. This phenomenon may have been accelerated during the Oxfordian sea-level fall (*cf. Hallam, 2001; Norris and Hallam, 1995; Wierzbowski et al., 2009*).

The lack of temporal trend in the belemnite δ¹³C values from the Dubki section indicates that δ¹³C values of DIC in central part of the Middle Russian Sea were high, albeit noisy, throughout the latest Callovian and the earliest Oxfordian. The carbon isotope record of the Dubki section near Saratov is similar to the record of other Boreal–Subboreal localities characterized by high belemnite δ¹³C values in the studied time period (*cf. Nunn et al., 2009; Price and Page, 2008; Fig. 8*). Additional studies are, however, necessary to precisely document carbon isotope variations in the Cordatum Zone of the Russian Platform.

8. Conclusions

This study presents high resolution oxygen and carbon isotope records of the Callovian–Oxfordian boundary of the Russian Platform at Saratov based on well-preserved belemnite rostra and ammonite shells. Oxygen and carbon isotope compositions of belemnite rostra and ammonite shells are assumed to be reliable proxies for seawater palaeotemperatures and secular variations in the isotope composition of DIC. Belemnites and ammonites are considered to have been nekto- and nektonic dwellers, respectively. Palaeotemperatures calculated for cylindroteuthid belemnites (average 5 °C), belemnopseid belemnites (average 8 °C) and ammonites (average 13 °C) indicate a vertical thermal gradient within the water column. Low temperatures of bottom waters likely indicate that the Middle Russian Sea was affected by circulation of cold polar waters during the Callovian–Oxfordian transition. It is shown by a comparison of isotope data from various European localities that the cold bottom waters did not spread further to the south to the areas of Poland and England.

The absence of direct correlation between the belemnite oxygen isotope record and the relative abundances of ammonite families in the Dubki section is explained by different depth habitats of ammonites and belemnites. Variations in ammonite, belemnite and ostracod assemblages in the upper part of the Dubki section correlate with each other and may arise because of a change in water circulation in the Saratov area of the Middle Russian Sea during the Early Oxfordian.

There is no evidence for glaciation at the Callovian–Oxfordian transition in Northern Siberia and NE Asia. Spreads of cold bottom waters and cardiaceratid ammonite fauna at the Callovian–Oxfordian transition were likely connected with changes in water circulation and paleogeography of marine basins during sea-level highstand.

The belemnite δ¹³C values from the entire study interval are characterized by a significant scatter (+1.5 to +3.8‰) with no distinguishable temporal trend. The Lower Oxfordian carbon isotope record of the Russian Platform at Saratov is similar to the record of the Boreal–Subboreal carbonates but markedly differs from the record of carbonates from the Submediterranean ammonite province. Higher (than Submediterranean) δ¹³C values of Lower Oxfordian belemnite rostra from the Boreal–Subboreal ammonite province likely result from high organic matter productivity and/or burial in semi-isolated northern seas.

Acknowledgements

This study was supported by RFBR grants no. 03-05-04264 and 09-05-00456, the programs no. 16 and 24 of the Presidium of the...
Russian Academy of Sciences as well as the statutory funds of the Institute of Geological Sciences, Polish Academy of Sciences. Field work was financed under the agreement on scientific cooperation between the Polish Academy of Sciences and the Russian Academy of Sciences. We are indebted to Dr. S. Yu. Maleonkina from the Geological Institute of RAS, Moscow as well as Prof. A. Yu. Guzhikov and Doc. A.V. Rogov, both of Saratov State University for help during field work in Dubki. Two anonymous reviewers are thanked for valuable reviews and suggested improvements.

References

