The Influences of Palaeogeography, Tectonism and Eustasy on Faunal Development in the Jurassic of New Zealand

G. R. STEVENS

New Zealand Geological Survey, DSIR, P.O. Box 30368, Lower Hutt, New Zealand

ABSTRACT

The changing affinities of the successions of benthic marine life in the Jurassic of New Zealand are a reflection of the opening and closing of ecological gateways controlled by the interaction of factors relating primarily to geography, climate and oceanography.

The progressive movement of Gondwana away from the pole-centred configuration it occupied during the Carboniferous and Permian led to the disappearance of temperature barriers and an equalising of climate across eastern Gondwana. The distinctive “Maorian” faunas of New Zealand, Triassic and early Jurassic, of presumed cool or cold-temperate aspect, progressively gave way to sub-tropical/warm-temperate aspect. Widespread orogenic movements along the Tethyan margins facilitated the opening up and extension of Tethyan migration routes. In the New Zealand region tectonism associated with the Rangitata Orge-
were set in the context of the then prevailing methodological climate of continental stability, and the observed faunal relationships were interpreted as being the result of migrations around the edges of the existing continents.

Acceptance of crustal mobility (continental drift and its successor plate tectonics) opened the way for a reassessment of the faunal data, and for recognition that the Tethyan radiations were a reflection of and an integral part of the changing palaeogeographic relationships of Pangaea. A number of studies of such relationships from a New Zealand perspective have been made, using the powerful new tool of plate tectonics (eg. Stevens 1967, 1971, 1974, 1977, 1980a, b; 1985a; Stevens & Fleming 1978; Stevens & Speden 1978), However, the last few years have seen the advent of a number of refinements and the availability of new data:

(I) A more tightly constrained palaeogeographic reconstruction for Gondwana has become available (eg Lawver & Scotese 1987; Grunow, Dalziel & Kent 1987; Grunow, Kent & Dalziel 1987). However, the influence (if any) on such a reconstruction of factors such as earth expansion, of either moderate (eg Owen 1983a) or substantial major proportions (eg Shields 1983; but see Hallam 1984), and the part played in palaeobiogeography by the rafting of exotic terranes (eg Howell et al. 1984; Hallam 1986) remain largely unresolved. Both factors have the potential of having a major influence on Tethyan and in particular New Zealand palaeobiogeography. For example, acceptance of even a moderate amount of earth expansion would substantially close the Pacific and Tethyan gaps in most of the commonly accepted palaeogeographic reconstructions (e.g. Smith, Hurley & Briden 1981), and would considerably shorten biotic dispersal routes (Fig. 1). Acceptance of the proposition that many circum-Pacific continents are largely collages of exotic terranes would call into question the geometric relationships of many elements of “conventional” palaeogeographic reconstructions such as that published by Lawver & Scotese (1987).

(III) Refinements have been made in dating and correlation of the Jurassic (eg Harland et al. 1982; Westermann 1984a; Snelling 1983; Haq et al. 1987; Bayer 1987). However, subdivision and correlation of the late Jurassic still remains the subject of debate (eg Westermann 1984a). The uncertainty in overseas correlations has served to emphasise the continuing need for an independent New Zealand time scale (eg. Thomon 1916; Hornbrook 1965, 1971) and the New Zealand data presented in this paper have been plotted with reference to this scale.

(IV) New eustatic information has become available. Publication of a revised version of the Vail/Exxon eustatic curves (Haq et al. 1987) has been accompanied by a continuation of the debate about the applications of such curves (eg Miall, 1986; Poag & Ward 1987; Hallam in press). However, full and informed debate has been hampered by the difficulty, and often the impossibility, of directly checking the raw data used as the basis for the curves. In the instance of the Jurassic curve, for example, it is suspected (but not known with any accuracy) that the data have largely been derived from the North Sea and because of local tectonism, may have limited application elsewhere (Miall, 1986; Hallam in press).

INFLUENCES ON NEW ZEALAND JURASSIC MARINE FAUNAS

The marine faunas of the New Zealand Jurassic, like all natural biotic systems, have been influenced by the interplay of a complex mix of palaeoenvironmental factors. Although not necessarily an all-inclusive list, the major factors may be grouped as follows: (a) palaeogeography, (b) climate, (c) tectonism, (d) sea level changes.

As the first three factors have been discussed in previous publications (e.g. Fleming 1967, 1975; Stevens & Fleming 1978; Stevens 1980a) they are not treated in detail in this paper. Instead, because of the availability of new and refined data relating to sea level changes discussion in this publication is primarily focused on eustasy and its influences on faunal development in the New Zealand region.

(a) PALAEOGEOGRAPHY

In the Jurassic the Greater New Zealand landmass formed by the Rangitata Orogeny (see below) was an integral part of eastern Gondwana. Routes around the margins of Gondwana were available to facilitate faunal interchange (Stevens 1980a, 1985a).

(b) CLIMATE

Progressive rotation of Gondwana throughout late
Paleozoic and early Mesozoic times had rotated eastern Gondwana into mid-latitudes in Jurassic times (Grunow, Kent & Dalziel 1987). Climatic differences had therefore been largely smoothed out and climate was reasonably uniform over large areas of eastern Gondwana. (Stevens 1980a, 1985a).

(c) TECTONISM

The Jurassic period spanned the onset of the Rangitata Orogeny. Although some orogenic movements occurred in the middle Jurassic, and these have been interpreted as precursory to the main Rangitata Orogeny (eg Fleming 1967, p. 420; 1970, p. 148), there is a difference of opinion as to their importance (eg Suggate et al. 1978, p. 319; Spörli 1987, p. 121). Nonetheless, it is generally agreed that the main Rangitata orogenic movements commenced in the late Jurassic and extended into the early Cretaceous (Bradshaw et al. 1981; Spörli 1987; Norris & Caw 1987). As a result of these movements a large landmass was created in the New Zealand region - a Greater New Zealand half the size of the modern Australian continent. Creation of this Greater New Zealand landmass provided fresh opportunities for the migration of shelf faunas around its shoreline. Also, it is probable that orogenic movements occurring in areas to the north (New Caledonia, Papua New Guinea and Indonesia: Paris 1981; Skwarko et al. 1983; Audley-Charles, 1978) and to the south (Antarctica, South America; Thomson 1983; Ricardi 1983), with timings comparable to those occurring in New Zealand, had the overall effect of extending migrational links in these directions, so facilitating the wide dispersal of shelf marine faunas ("Tethyan" faunas) in a broad arc extending around the periphery of eastern Gondwana (see Fleming 1967,1975; Stevens 1980a, 1985a).

(d) EUSTASY

Although details of the Exxon/Vail eustatic curves have been the subject of considerable discussion, notably by Hallam (in press), nonetheless a consensus has emerged about the general trend of sea levels throughout the Jurassic: important sea level rises occur in the late Hettangian, early Sinemurian, Toarcian, Bajocian, Callovian and Kimmeridgian-early Tithonian. Regardless of the exact details of the sea level curve, it is apparent from the data presented in the following section of this paper that the New Zealand Jurassic marine faunas have been exposed to the effects of global cycles of regression and transgression.

The biological effects of transgressions and regressions have been reviewed by a number of authors (eg Jablonski 1980; Hallam 1975, 1977, 1978, 1987). However, it is of particular relevance in the New Zealand context to note that transgressive-regressive effects can operate on various scales, ranging from local to global. At one extreme, local tectonic activity may produce regional cycles of falling and rising sea level. At the other extreme, eustatic effects can be distinguished that are of such magnitude that they are largely independent of local tectonism. In between these two extremes are various combinations of circumstances that locally may impose complexities and considerably modify the global eustatic patterns: largely nullifying or accentuating the effects of rises and falls in global sea levels.

The possibility of local tectonic movements imposing modification on global eustatic patterns is of great relevance to the New Zealand situation in the Jurassic, when like today (eg. Walcott 1987) the areas of sedimentary deposition were at or very close to an active continental margin (Kamp 1980, 1986; Spörli 1987; Korsch & Wellman 1988). Nonetheless, judging from the close correlation between New Zealand faunal data and global eustatic curves, the role of tectonism appears to have been mainly restricted to a pulse of uplift in the middle Jurassic (Fleming 1967, 1970) and the onset of the main movements of the Rangitata Orogeny in the latest Jurassic (Suggate et al. 1978, pp. 318-333).

Regardless of whether the transgression originates from local (tectonic) or global (eustatic) causes, a phase of actively rising sea level will have the following biological consequences (modified from Fortey 1984; see also Brenchley, 1984):

1. In cratonic areas widespread flooding will produce vast epicontinental seas. The great expansion of environmental niches in such seas will induce high speciation rates.
2. In areas of continental shelf, a transgressive phase will tend to lift off-shelf Faunas and bring in open oceanic faunas onto the shelf. Simultaneously, there will be a landward advance of shelf biofacies so that inner shelf faunas give way to those of the outer shelf, and if transgression is very rapid, there may be extinctions of some inner shelf faunas, as they will be unable to adapt sufficiently quickly to the rising sea level.
3. Because off-shelf and open ocean faunas are more independent of continental shorelines, times of transgression may appear as times of a lessening of provincial faunal distinctions.
4. As the rising sea level progressively immerses offshore "highs", there will be a marked reduction in the...
FOSSILI, EVOLUZIONE, AMBIENTE - G.R. STEVENS

<table>
<thead>
<tr>
<th>Million Years</th>
<th>Internat. Stage</th>
<th>N Z Stage</th>
<th>Sea Level Curves</th>
<th>Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>135-140</td>
<td></td>
<td></td>
<td>Exxon Rising</td>
<td>Hallam Rising</td>
</tr>
<tr>
<td>145</td>
<td>Tith. Op</td>
<td>Ko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Kimm. Kh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Oxf.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Call.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Bath. Kt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Baj.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Aal. Hu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Toar. Plien. Ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Sin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Hett.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOSSILI, EVOLUZIONE, AMBIENTE - G.R. STEVENS

<table>
<thead>
<tr>
<th>Million Years</th>
<th>Internat. Stage</th>
<th>N Z Stage</th>
<th>Sea Level Curves</th>
<th>First Appearances</th>
</tr>
</thead>
<tbody>
<tr>
<td>135-140</td>
<td></td>
<td></td>
<td>Exxon Rising</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Tith. Op</td>
<td>Ko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Kimm. Kh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Oxf.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Call.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Bath. Kt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Baj.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Aal. Hu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Toar. Plien. Ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Sin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Hett.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
JURASSIC FAUNAS OF NEW ZEALAND

Million Years

<table>
<thead>
<tr>
<th>Million Years</th>
<th>Internat. Stage</th>
<th>NZ Stage</th>
<th>Sea Level Curves</th>
<th>Last Appearances</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Tith.</td>
<td>Op</td>
<td>Rising</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>Ko</td>
<td>Rising</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Kimm.</td>
<td>Kh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Oxf.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Call.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Bath.</td>
<td>Kt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Baj.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Aal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Toar.</td>
<td>Hu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Plien.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Sin.</td>
<td>Ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Hett.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sea Level Curves

- **Exxon**: Rising
- **Hallam**: Rising

Last Appearances

- Speciation

Turnover

- **Exxon**: Rising
- **Hallam**: Rising

Speciation

- 0
- 5
- 10

possibilities for dispersal of shelf faunas via island hopping. But along active continental margins (as was probably the situation of New Zealand in the Jurassic; e.g. Kamp 1980, 1986), the on-going creation of volcanic island arcs may overtake and largely negate the effects of transgression.

During a regressive phase the following biological effects are likely to occur:

1. Stratigraphic gaps will develop in cratonic areas.
2. In shelf areas there will be a seaward retreat of shelf biofacies, and in some extremes there will be widespread deposition of supra-or infra-tidal sediments, poor in fossils.
3. Falling sea levels will tend to increase the incidence of island faunas, by increasing the extent of surrounding productive shelf, and by bringing formerly submerged volcanic islands into shallow sub-littoral depths.

CHANGES IN FAUNAL DIVERSITY AND TURNOVER

To obtain a measure of the extent of faunal radiation and extinction in response to environmental change in the Jurassic of New Zealand, diversity and turnover analyses have been undertaken in a number of invertebrate groups (Figs 2-5). These analyses have been based only on those groups for which modern taxonomy is available. The New Zealand faunas are notably less diverse numerically (Fig. 2) than those of Europe, for example (cf. Hallam 1987). This lowered diversity is probably a result of New Zealand's marginal-Tethyan situation in the Jurassic, equivalent to modern temperate climes (Stevens 1971, 1980a, 1985b).

The analyses have been plotted with a primary relationship to the New Zealand time scale. Because of correlation uncertainties (Stevens & Speden 1978), linkage with "International" stages is tentative. The diversity graphs consist of plots of the numbers of taxa for each stratigraphic interval. Separate plots have also been provided for the numbers of first and last appearances of taxa occurring in each stratigraphic interval (Figs 3, 4).

A turnover rate for the taxa involved in the analyses has been derived by averaging the number of first and last appearances, dividing by the total number of taxa, and expressing the result as a percentage (Fig. 5).

In terms of the criteria proposed by Fortey (1984) for recognition of the biological effects of transgression and regression, and summarised in the preceding section, the faunal analyses presented in Figs 2-5 indicate that the New Zealand Jurassic sequence has been responsive to the environmental effects of rising and falling sea levels.

Biological changes in the New Zealand Jurassic that may, in terms of Fortey's criteria, be related to rising sea levels include: high diversity, increases in speciation rates; influxes of off-shelf and open oceanic faunas (e.g. Phylloceratinae and Lytoceratinae: Tanabe 1983; Stevens 1985b); occurrence of K-selected taxa (e.g. Stevens 1985b); influxes of taxa with wide-ranging affinities (e.g. Cosmopolitan, Tethyan, Indo-Pacific etc; see following section).

Biological changes that may be related to falling sea levels include: low diversity, extinctions, biostratigraphic gaps and/or general paucity of shelf biofacies (associated with sedimentological evidence for regression; see Kear

![Figure 6](image-url)
dle Ohauan Stage. The twin peaks appear to correspond with major global transgressive pulses in the Kimmeridgian and Tithonian, as documented by Haq et al. (1987) and by Hallam (in press), and indicate a positive correlation between transgression and faunal change, as noted above.

If correlation of the twin peaks of the New Zealand late Jurassic with the global eustatic pulses of the Kimmeridgian and Tithonian is sustained, this linkage can be used (as noted by Hoedemaeker 1987) to provide an independent connexion between the New Zealand and International stages in the Upper Jurassic - a topic which has been the subject of differences of opinion (Enay 1972a, b, 1973; Stevens 1978; Stevens & Speden 1978; Verma & Westermann 1973; Jeletzky in Westermann 1984b, p. 188, 189; Helby et al. 1988) (Fig. 6). The linkages based on eustasy may be interpreted as supporting correlation of the middle Heterian with the Kimmeridgian and the lower Puaroan with the lower Tithonian stage (both stages used in the central and southern European sense; eg Sarti 1985, 1986; Michelsen, 1987, p. 5). Other peaks of faunal change occur lower in the New Zealand Jurassic column, but they are generally less marked than those in the late Jurassic (Fig. 6). Nonetheless, as in the late Jurassic, there appears to be a correlation between changes in the New Zealand faunal succession and transgressive highs in the Callovian, Bajocian, Toarcian, Sinemurian and Hettangian as documented by Haq et al. (1987) and Hallam (in press).

It is not clear whether the decline in the magnitude of faunal change in the early and middle Jurassic (compared with that of the late Jurassic) is a reflection of the lesser magnitude of such transgressive peaks, compared with those of the late Jurassic, or is due to a lack of data, or whether the effects of global eustasy have been diminished by local tectonism associated with the Rangitata Orogeny.

TETHYAN INFLUENCES

The transgressive peaks in the Tithonian, Kimmeridg-
ian, Callovian, Bajocian, Toarcian, early Sinemurian and late Hettangians coincide with major influxes of overseas immigrants, notably from the Tethyan region (Fig. 7), and it is suggested that these immigration waves are primarily related to transgressions in the manner proposed by Fortey (1984), and summarised earlier in this paper.

The affinities of immigrant taxa that came to New Zealand in middle and late Jurassic times are illustrated for some representative examples in Figs 8-18. A summary of the range of these affinities is provided in Fig. 19, from which it may be seen that much of the faunal immigration was via routes around the margins of the Tethys. However, notable exceptions are the East Asian affinities shown by some Trigoniacea (Fleming 1964, 1987), presumably related to immigration across the width of the Tethys (cf. Celal Sengor & Hsu 1984).

Nonetheless, if different reconstructions are used, for example, those of Owen (1976, 1983a, b), or more particularly Shields (1983), the Tethys is dramatically reduced in width (Fig. 1), or reduced to narrow seaways (as proposed by Waterhouse 1987), considerably condensing and simplifying the immigration routes depicted in Fig. 19.

CONCLUSIONS

Although the faunal successions of the New Zealand Jurassic have been influenced by changes in palaeogeography, climate and tectonic activity, an even more pervasive influence has probably been exerted by eustasy.

The geographic, climatic and tectonic changes that occurred had the effect of facilitating faunal migration, by extending and expanding immigration routes and by equalising climatic differences. However, judging from the close correlation between faunal data and global sea level curves, particularly in the late Jurassic, eustasy has had an important role in faunal development.

Biological indicators for marine transgression that are present in the New Zealand Jurassic faunal data include high faunal diversity, appearances of new taxa, and influxes of taxa with wide-ranging affinities. Indicators for regression include low faunal diversity, extinctions, bi-ostratigraphic gaps and endemism. Judging from these bi-

Figures 8-18 - Diagrammatic summaries of the affinities of representative New Zealand taxa of middle and late Jurassic age (named in the diagrams), the affinities of which are well defined on the basis of recent taxonomic revisions (cited in the caption to Figs 2-5). The affinities summarised in the diagrams relate only to the New Zealand representatives of the named taxa and do not present a complete picture of the entire range of affinities of the taxa elsewhere in the world.

The reconstruction is based on that of Howarth (1981, Fig. 13.9), with modifications from Lawver & Scotese (1987) and Grunow, Dalziel & Kent (1987). The stippled patterns indicate areas presumed to have been land in the middle and late Jurassic. Abbreviations: SE = Southern European block; Tu = Turkish block; Ir = Iranian block; Ti = Tibetan block; MBL = Marie Byrd Land; LHR = Lord Howe Rise; NR = Norfolk Rise; NC = New Caledonia.
Phylloceras ex gr. salima Adabofoloceras Calliphylloceras
Holcophylloceras Ptychophylloceras Lytoceras

Kossmatia
The diagram illustrates the overseas affinities of New Zealand taxa of middle and late Jurassic age, representative examples of which are illustrated in Fig. 8-18.

ACKNOWLEDGEMENTS

I wish to thank Dott. G. Latella, Dott. G. Pallini, the Comitato Centenario Raffaele Piccinini, and the Comune di Pergola for the kind invitation and generous financial support that enabled me to attend the Second Pergola symposium, at which this paper was presented.

Dr. N. Mariotti kindly provided the abstract in the Italian language and Professor A. Hallam (Birmingham University) an advance copy of his paper on Jurassic eustasy. The New Zealand Geological Survey provided facilities for the preparation of this paper, the typing of which was undertaken by Sue Nepe. The diagrams accompanying the paper have been prepared by my wife, Diane Stevens and the inset drawings of fossils were contributed by Ron Brazier, Palaeontological Artist, New Zealand Geological Survey.

REFERENCES

CELAL SENGOR, A.M., 1985 - The Story of Tethys: How many wives did Okeanos have?: Episodes 8: 3-12.

