Palaentologia Indica,

BEING

FIGURES AND DESCRIPTIONS OF THE ORGANIC REMAINS PROCURED DURING THE PROGRESS OF THE GEOLOGICAL SURVEY OF INDIA.

PUBLISHED BY ORDER OF THE GOVERNMENT OF INDIA.

New Series.
Vol. IX, Memoir No. 1.

On the Blake Collection of Ammonites from Kachh, India,

By

L. F. SPATH, D.Sc., F.G.S.

CALCUTTA:
SOLD AT THE OFFICE OF THE GEOLOGICAL SURVEY OF INDIA, 27, CHOWRINGHEE ROAD.

1924.
ON THE BLAKE COLLECTION OF AMMONITES FROM KACHH, INDIA.

BY

L. F. SPATH, D.Sc., F.G.S.

The collection of Kachh ammonites made by the late Prof. J. F. Blake, and already referred to by Dr. Kitchin (43) in these memoirs, is now preserved in the British Museum (Natural History) and includes an interesting suite of over 570 specimens. Through the kindness of Drs. Smith Woodward and Bather the writer was permitted to study this collection, a few specimens in which Prof. Blake had named himself. Though there are a certain number of new species, these are not specially dealt with in the present paper, the object of which is rather to give a provisional account of the examination of the collection as a whole.

In order satisfactorily to revise the species of Jurassic ammonites from Kachh, a study of Waagen's types (100) would be necessary. The writer has unfortunately not been able to re-examine these types, so that it is feared that the true affinities of some of Waagen's species may still remain uncertain. According to Noetling (63) Waagen's figures are in many cases considerably, and not always happily, restored. But Noetling himself misrepresented the Baluchistan fauna he was describing; for the majority of his ammonite species are of Argovian, not Callovian age. Noetling not only followed Waagen in misinterpreting Sowerby's A. lamellosus and A. opis but also mistook Waagen's Perisphinctes spirorbis for P. aberrans, owing to the wrong numbering of Waagen's plates, though he re-examined Waagen's type.

Noetling's "Sphaeroceras bullatum," very distinct from the Kachh "Sphaeroceras" cosmopolita, Parona and Bonarelli-sp, (70a), also "Perisphinctes" balinensis and "P." baluchistanensis, Noetling, are probably of Callovian age; and the two latter species are of the type of Grossouvría furcula and G. aff. spirorbis (Neumayr) Waagen, here recorded from the Middle and Lower Chari groups of Jumara. The large example of Macrocephalites macrocephalus, figured by Noetling on pl. viii, may also belong to the formosus-group of early macrocephali, discussed below, though similar forms, here referred to a new genus, occur again, e.g. in the upper beds of Gangta Bét, associated with typical Argovian Perisphinctes. There seems to be no doubt, however, that the forms described by Noetling as Macrocephalites polyphemus, lamellosus, opis, subcompressus and transiens do not belong to the Callovian true macrocephali, and the confusion of many developments of different dates by Lemoine (48a) who more recently published a revision of the genus "Macrocephalites," has greatly complicated, instead of simplified, matters.
Again, Parona and Bonarelli (70b), who had dealt with the genus "Macrocephylites" ten years earlier, compared with M. tumidus (Reinecke) the holotype of A. herveyi. Sowerby (88, pl. 195, upper figure) though the more finely costate original of Sowerby's very misleading lower figure may be closer to Reinecke's species than the true A. herveyi. Parona and Bonarelli also included in Macrocephalites tumidus both M. grantanus (Oppel) and Stephanoceras tumidum, Waagen (non Reinecke), also A. herveyi, Sowerby 1840, (89, pl. xxiii, fig. 5) all of which species are quite distinct, as is Blake's (2a) "Macrocephalites" herveyi (non Sowerby).

There is thus a far too comprehensive interpretation of species and genera by many writers, and it may be recalled that Kitchin (43) in 1900, thought that the proportion of Kachh Cephalopoda formerly considered to be identical with European types, namely, 47 out of 156, was too large. Nevertheless, when strictly contemporaneous faunas are compared, e.g. the Aspidoceras-Peltoceratoides-Perisphinctes assemblage of Vieil St. Rémi, Ardennes, with the corresponding faunas in the Dhosa Oolites, there is striking agreement, though Cardiocerates are absent in India. It is hoped that the present attempt to correlate the Kachh fauna with European equivalents will prove of interest, likewise the incorporation in this paper, of a revision of the generic nomenclature, and the addition of the writer's interpretation of Sowerby's types of Kachh ammonites (89, 90), also preserved in the British Museum ( Geological Society Collection) (1 & 21), and, like Waagen's species, generally much misunderstood.

The localities represented by the largest number of specimens are: -- Kantcote (109), Khera (= Keera) (59), Jumara (57), Jikadi (21), Badi (40), Wanda (30), South Maujal (30), Katrol (28), Barodia (23), Ler (= Leir or Lair) (East 17, West 4), Jooria (20). The remaining localities include Jarra (= Jara), Gangta Bét, Soorka, Lodai, Narrha (= Nurrha), Charvar, known from Waagen's descriptions, and eighteen others. Lists of ammonites from some of these localities are given at the end of this paper, with the zonal information as marked by Prof. Blake on the specimens. Unfortunately there appears to be no manuscript record of these beds with their thicknesses and other desirable information, and the remainder of the specimens bear merely locality labels.

Eight examples of Cretaceous Ammonoids from the "Top-Beds" of Artara are referred to the Aptian. The Jurassic ammonites range from the Callovian to the Kimmeridgian, but do not represent a continuous succession of zones. Dacqué (26) considered the 1,800 m. of Kachh deposits to form a complete series from the Bathonian to "beyond the Tithonian." The Kachh ammonites as yet known; however, represent but fragments of the various divisions of the Middle and Upper Jurassic, as will be seen on perusal of Table II.

To take only the case of the macrocephali, there are several Callovian horizons containing these forms (not separated in Table II) in addition to those of the Cornbrash. The macrocephalus beds of Kachh may not correspond with the exact horizons studied by Model (57) in Franconia and by Buckman (11, vol. IV,
part 32) in England, but until exact data are to hand from other comparable localities, and the ideal universal sequence of the various horizons in the "macercephalus beds" is established, an exact determination of the position within the old "macercephalus zone" of the Kachh representatives is impossible.

As regards the larger divisions, equal caution must be exercised. The Kachh fauna, e.g., does not appear to include deposits corresponding with undescribed Madagascar and Somaliland faunas of Argovian? and "Tithonian" ages, or anything comparable to the very peculiar (Callovian?) fauna described by Neumayr (59) and Crick (20) from Western Australia, whence Moore (58) had recorded a very doubtful A. macrocephalus. There may be enormous gaps, probably very incompletely bridged by plant-bearing beds; and a frequency of non-sequences is now found to be very general, though mostly not evident, in apparently continuous sections. When facies and lithology are similar, and the beds have, as in the Alps, been metamorphosed and disturbed tectonically, serious errors of observation have resulted (73). Any Bathonian or Callovian remnant in the Alps that happens to follow, non-sequentially, on the Bajocian is referred to the "Klaus Beds" and the dissimilarity of the ammonite faunas of these beds of different ages is erroneously attributed to horizontal variation. When the full sequence of all the horizons is known the thickness of the Jurassic will be found to be incomparably greater than is believed at present. The evolution of the ammonites could not have been nearly so rapid as is generally supposed on account of the discontinuous nature of even the most representative sections.

A few words are necessary with regard to the classification here adopted. The writer feels that the conventional "laws" of development, as enunciated by Hyatt and Buckman, will not enable us to solve the problem of ammonite phylogeny. The widespread simplification of suture-lines in post-Triassic stocks has not been fully appreciated and highly significant is the fact that Phylloceratidae alone survive into the Jurassic and, with Lytoceratids, persist to the uppermost Cretaceous. The appearance of ornamentation in Phylloceratids and Lytoceratids, from the Hettangian Pleuracanthites up to Phylloceras strigile of the Spiti Shales, with consequent modification of the suture line, also has not attracted attention. In the writer's opinion the natural order of Jurassic ammonites may well be from complex to simple, i.e. the reverse of that given by Buckman (10c). In the circumstances, it is impossible to regard the classification here adopted as anything but provisional.

With highly specialised nomenclature and the popular skipping of hypothetical stages the lineal descendence of the family Oppelidae from Bajocian Oppelia might be brilliantly elaborated; but it is far more probable that this family comprises merely a heterogeneous assemblage of genera that occupy a position intermediate between the persisting Phylloceratidae and Lytoceratidae on the one hand, and the trachy ostracous families on the other, corresponding to that of the Cretaceous Desmoceratidae. That is to say, successive waves of so-called
Lissoceras, "Haploceras" and other intermediate types, derived probably via Sowerbycerates and Rhacophyllitids, like the earlier Pleurocanthites, Ectocentrites, Aegolytoceras (gen. nov.1), Derolytoceras, (?), Amphicerias and others, took on coarse ornamentation, with corresponding change in the suture line. In Cretaceous times, the same two more or less stationary parent-stocks (Phylloceratidae and Lytoceratidae) still persist and radiate continuously short-lived adaptive offshoots. Some of the less specialised (or ornamented) of these, appearing seemingly as "discontinuous modifications" or "de Vriesian mutations" at successive levels, may simulate a series and the "family" Desmoceratidae includes such a heterogeneous assemblage of transitional forms, having a common origin in Phylloceratidae whereas the (sculpturally) more highly differentiated but sutorially reduced mutations and certain aberrant lateral offshoots we include in a convenient family Hophlitidae, also a heterogeneous group of descendants of the polyphyletic Desmoceratidae. Suffice for the present to point out that the ammonite families here discussed are morphological rather than genetic units, and that family names like Pachyceratidae, Proplanulitidae, Perisphinctidae, &c. are used, as appeared to the writer most expedient with the material at hand, for groups of genera connected (morphologically) by transitions, by geological occurrence and close association in date. These families will of course be revised later with a view to their direct or indirect connection with the fundamental families Phylloceratidae and Lytoceratidae.

**PHYLLOCERATIDAE.**

The family is represented by twenty-three specimens of Phylloceras, including the Callovian Ph. disputable (Zittel) Waagen, Ph. vicarium Waagen, and the group of Ph. mediterraneum (Neumayr) var. indica, Lemoine. Ph. lodaense, Waagen, from the Dhosa Oolite, is numerously represented, and three examples from the Upper Jurassic are referred to Ph. insulare, Waagen. No Sowerbyceras has yet been recorded from Kachh. The writer, on a previous occasion, (92a) rejected the divisions within the genus Phylloceras proposed by Prinz (74), and must oppose similarly the attempts of Jullien (41) and Buckman (11a) to split up the genus Phylloceras, though Douvillé (29) indeed has adopted Jullien's 'Triphyllites' for the well-known Ph. disputabile, here recorded.

**LYTOCERATIDAE.**

The family includes four examples of Lytoceras ('Thysanolytoceras') adeloides (Kudernatsch) Waagen, from the Chari group, and one specimen of a Lytoceras of the montanum group, from the Kimmeridgian (?) of North Moondan.

1 For Geyeria, Fucini, nom. nov. Type ; A. severugatus, Stur. (Fucini : "Cetacea." Pal. Ital., Vol. VII, 1901, p. 78, pl. XII, fig. 9).
The absence of the very evolute and compressed Lytoceratids of the group of Lytoceras ("Prototetragonites") tripartitum, Raspail sp. (=Polystomiceras, gen. nov.) as of the genus Sowerbyceras is interesting; for in East Africa they occur with Phylloceras cf. disputabile and other forms in Callovian beds that present close analogy with those of the Crimea, described by Tsytovitch (97), and that were thought to correspond in age with at least part of the macrocephalus beds of Kachh. The writer may here also recall that when describing this East African fauna (92b) he stated that the zone of M. macrocephalus (Cornbrash) should be included in the Bathonian, and the Callovian considered to begin with the zone of Proplanulites koenigi. Subsequent study of Blake’s types of Cornbrash ammonites and numerous Continental forms of Macrocephalites has, however, shown that the typical Macrocephalites, that belong to the Callovian, are not represented in Blake’s Bathonian (Cornbrash) fauna. The genus Polystomiceras thus ranges into the Callovian.

OPPELIDAE.

The family is represented by fifty-nine specimens, besides an example of an Aptychus, from the Dhosa Oolite of Jikadi (Bed 22), somewhat like Waagen’s fig. 8a of Plate XI, but wider, which may possibly belong to a different family. The Callovian Oppelids include Alcidia cf. subdisca, d’Orbigny sp., A. nurrhaensis Waagen sp., and A. cf. subtostaria (Waagen non Oppel) and a slightly later group of species, perhaps true Hectioceras, including H. lairenses, H. trilineatum, and H. crassefalcatum, Waagen sp., with some resemblance to Buckman’s genus Putealiceras. The writer’s opinion on the grouping of certain forms of Hectioceras was given in a previous paper (92c). To this group also belongs ‘Oppelia’ orientalis, d’Orbigny non Waagen=A. corrugatus, J. de C. Sowerby 1840, pl. XXIII, fig. 12, No. 9983, Geol. Soc. Coll., non A. corrugatus, J. de C. Sowerby, Min. Conch. 1824, pl. 451, fig. 3= Oppelia ignobilis, Waagen non Sowerby sp. The forms are probably not directly related to the earlier ‘Hectioceras’ of the primaevum group, also found in the British Stonesfield Slate (=A. waterhousi, Phillips non Morris & Lycett) and there associated with a new genus Neactinoceras (type: Ammon. micromphalus, Phillips, [72]), as represented by B. M. No. Ci4082) which was not recorded by Woodward (101). This new genus includes also Amn. busquetii, Grossouvre (37a).

There are also three specimens of Oecotraustes cf. conjungens (Mayer) Waagen and “Oe. conjungens”, Loczy (50a) non Waagen, and an example of ‘Oppelia’ orientalis Waagen non d’Orbigny, for which latter the new name suborientalis and the new genus Hectioceratoides, gen. nov. (type = specimen No. 117, agreeing with Waagen’s fig. 5 of pl. XI) are proposed. This may be a development of the subpunctata-group of “Hectioceras”.

A. forniz, J. de C. Sowerby (No. 10079, Geol. Soc. Coll.) is transitional from Alcidia to the more involute Petricerclia but has the peculiar rows of fine tubercles of P. multiformis, Grossouvre sp. (36).
Twenty-one Upper Callovian and Dhosa Oolite examples are referred to 'Lunuloceras' and Sowerby's type of A. ignobilis (non Waagen, No. 9984, Geol. Soc. Coll.) is probably an immature specimen of a species of this group. Since Hecticoceras lunula Reinecke sp., according to Reuter (77b), however, occurs below the punctata-group of Hecticoceras, the term Lunuloceras cannot really be used for these unumbellate Oxfordian forms. Some at least, e.g. the Wanda examples mentioned below, may belong to Trimarginites.

There are also one Tarameliceras (cf. episcopalis, de Loriol) and two doubtful Ochetoceras (hersilia-group).

The Upper Jurassic forms include mostly Neumayriceras (kachhensis, Waagen and allied species) but also one 'Haploceras' (=Glochiceras ?) and two Streblites. There are no examples of 'Haploceras' deplanatum Lemoine (non Waagen ?) sp., so common in Madagascar, and associated with peculiar Aspidocerates and other undescribed forms, also unrepresented from India. The Madagascar beds are classed by Lemoine (48c) and Haug (38) as Sequanian or Kimmeridgian and compared with the Katrol Group of India and the Mombasa beds of East Africa (27) but are probably of different age from either. The Streblites are not well enough preserved for exact comparison with Uhligites hectori, n. n. = Ammonites (Kawhia) in Hector (40) and the Tithonian group of U. kraftii (Uhlig & Suess) and U. crassicostatus, Uhlig sp. (98), dealt with by the writer in a paper on "Ammonites from New Zealand." (94). The suture-line, however, of the Kachh Streblites is of the same type as that of U. nouhuysi, Boehm (5) or of U. motutaranus, Boehm (6a) with the ventral lobe reaching not lower than the apex of the first lateral saddle, and with an extremely wide first lateral lobe.

"Hecticoceras" kobelli, Oppel sp., also from the Katrol-group (?), but not represented in the present collection belongs to a group of forms for which the new genus Hildoglochiceras, gen. nov. (genotype: H. latistrigatum, Uhlig sp. (98), p. 27, pl. II, figs. 4a-c, pl. III, fig. 5, cast in B. M. No. C8596) is proposed. This genus has no affinity whatever with the Callovian Hecticoceras here discussed.

Apart from the eight Aptian ammonites described in the final paragraph of this paper, the remaining 475 examples belong to what formerly was regarded as one super-family "Stephanoceratidae." This is now subdivided into a number of families, the inter-relations of which, however, have yet to be determined. If, as the writer believes, the fundamental and persisting ammonite families Phylloceratidae and Lytoceratidae have repeatedly, during the Jurassic period, replenished e.g., "Oppelids," by the acquisition of ornamentation and consequent modification of the suture-line, it will seem unnecessary temporarily to emend the existing families. This is done here merely to facilitate the grouping together of genera of corresponding sets of strata; moreover very restricted families comprising only more or less contemporaneous genera, are more likely to include genetically allied units.
The genus "Macrocephalites" in the customary interpretation, is represented by 116 specimens, but of these only certain Callovian species are here included in that genus. Mr. Buckman's family:—

MACROCEPHALITIDAE,

not yet defined, is adopted for this very large group, sufficiently distinct from the earlier *Sphaeroceratidae*, *Morphoceratidae* and *Tulitidae*, which successively produced somewhat similar types. The *bullati* of the *macrocephalus*-zone, for which the new genus *Kheraiceras* is proposed (genotype: *K. cosmopolita*, Parona and Bonarelli sp. = *Stephanoceras bullatum*, Waagen, pl. 129, pl. xxxii, fig. 1) and which are not directly related to the Bathonian so-called "bullati" of the family *Morphoceratidae*, belong to the family *Macrocephalitidae*, but not the Cadoceratid group of 'Macrocephalites' *ishmae*, Keyserling sp., which probably includes the form compared to *M. compressus* (Quenstedt) by Madsen (53). This lineage is renamed *Arcticoceras*, gen. nov. (genotype = *A. ishmae*, Keyserling sp., in Keyserling & Krusenstern: 'Petschora' 1846; p. 331, pl. xx, figs. 8-10) and is related to *Pseudocadoceras*, Buckman, but does not comprise 'A. ishmae, var. arcticus,' Newton (61).

The collection includes twenty-four specimens of the typical *Macrocephalites madagascariensis*, Lemoine, *M. chariensis* and *M. semilaevis* (Waagen), *M. tumidus* (Waagen non Reinecke), and *M. formosus*, Sowerby sp., the examples of the last species shewing perfect agreement with Sowerby's holotype (B. M. No. 9978, Geol. Soc. Coll.). Waagen's *St. macrocephalum*, depicted on pl. xxvii, figs. 1a, b, included in the synonymy of *M. madagascariensis* (= *noetlingi*) by Lemoine (48c), is close to Sowerby's species, but there is only one fragmentary British example from Northamptonshire in the B. M. (No. 82389) that has some resemblance to the forms of this *formosus*-group.

The specimen figured by J. de C. Sowerby as *A. herveyi* (89, pl. xxiii, fig. 5, non 90, p. 719, nec 88, pl. 195) agrees with Waagen's *St. tumidum*, pl. xxvi, and has the suture-line of fig. 1c of pl. xxvii (B. M. No. 9976, Geol. Soc. Coll.). It is thus not identical with *Macrocephalites granatus* as Oppel (66) and Waagen (100a) thought, or with *M. tumidus*, Reuter (77a), though the latter form which also occurs in the Kellaways Clay of Chippenham, appears to be very similar. An example agreeing with Waagen's fig. 2, pl. xxvii, also erroneously called *Steph. tumidum*, but with a much wider whorl-side and smaller umbilicus, connects the two species *M. tumidus* (Waagen non Reinecke) and *M. madagascariensis*, Lemoine.

The true *M. herveyi* (Sowerby), and its compressed representative (*M. compressus*, Blake pars, non Quenstedt) and the tumid varieties, leading to *M. typicus*, Blake, and *M. herveyi*, Lissajous (49) non Sowerby, on the one hand, and to *M. macrocephalus*, Blake non auct., *M. tumidus* (Reinecke) Blake, and *M. terebratus*, Phillips sp., on the other, may not be represented in India (*Pleurocephalites* and *Catapehals*, S. Buckman).

Another twenty-four specimens include the more coarsely ornamented group of *Macrocephalites dimerus*, *diadematus*, *chrysoolithicus*, *magnumbilicatus* (Waagen),
grantanus (Oppel, Waagen), subtrapezinus (Waagen), and lamellosus, Waagen non Sowerby sp. The true *M. lamellosus* Sowerby (B. M. No. 9979, Geol. Soc. Coll.) is not represented in the Blake Collection. It differs from Waagen's *St. lamellosum* and from the forms figured by Bukowski (13) and Bureckhardt (14) in having the ribs simply concave forwards, not biconcave; but its suture-line is not visible, and it is not certain that it belongs to this genus. The European forms closest to the true *A. lamellosus* appear to be undescribed types of the *herveyi*-group (B. M. No. 82389 from Northants, and 74227 from Niort, Deux Sèvres), which, however, are more evolute, whereas the true *Macrocephali* (e.g., C 10564 from Chanaz, Savoy) have quite a different rib-curve. *M. diadematus*, Waagen, as here interpreted, however, may be distinguished from *M. macrocephalus*, Blake non auct., (2b) only by greater thickness.

A new compressed form of the group of *M. chrysoolithicus* somewhat resembles 'M.' rotangi, Boehm (4a) mentioned below, and is another species that might be mistaken for one of the later 'Macrocephalites' of the *maya*-group; but its suture-line is of the type of that of *M. chrysoolithicus*, and there are comparable examples in the British Cornbrash, apparently connecting this species with *M. terebratus*, Phillips sp. (= *M. macrocephalus*, Blake, pl. III, fig. 6 only). The difference in the type of suture-line, namely, a radial or descending line in the Callovian, and an ascending, arched line in the Argovian forms, mentioned by Waagen (100b) and Uhlig (98) generally holds good, notwithstanding Boehm's criticisms (8) but the bases of the lobes are ascending in most 'Macrocephalites.'

Four examples, including one new species, of the group of *M. subcompressus* (Waagen) and *keeuwensis*, Boehm (7a), lead to *Steph. eucyclum*, Waagen, for which the new genus *Eucycloceras*, gen. nov. (type = specimen 246, agreeing with Waagen's fig. 1 of pl. XXXV) is proposed. This is represented by six examples, from No. 10, Khera Hill, associated with *Macrocephalites* (*Eucycloceras?*) of the *subcompressus* type (Middle Chari Group) and thus not of Dhosa Oolite age as Waagen and Boehm thought. In the Kosmoceratid genera *Kepplerites* and allies, with somewhat similar outer whorls, the ventral area has a distinct flattened zone (runcinate stage) in the young. Quenstedt's *M. compressus*, which is more finely ornamented than *M. typicus*, Blake, has nothing to do with this Indian *subcompressus*-group, characterised by peripheral projection of the radii; and Blake's *M. compressus* includes both forms such as the figured example, comparable to the inner whorls of Quenstedt's 'Riesen-tumidus' (76a) and resembling *M. canizzaroi* (Gemmellaro) and *M. pilleti*, Parona and Bonarelli, and the new but common species of the *herveyi*-group, referred to before.

The later 'Macrocephalites,' belonging to a number of lineages, are here provisionally included in the family:

*Pachyceratidae*, Buckman emend.

A fragmentary specimen of the Oxfordian genus *Pachyceras*? with rounded umbilical tubercles, comes from No. 22 at Jikadi, associated with *Peltoceras diversi-
AMMONITES FROM KACHH, INDIA.

Considering the complete absence of Cadoceratidae and Cardioceratidae in the Kachh Jurassic (see 85) the record of this unique Pachyceras is of interest. Now the stock which gave rise to Pachyceras and Tornquistites in the European Jurassic may also include the ancestral forms of the 'Macrocephalites' here discussed: for the young of A. maya, J. de C. Sowerby and of allied species (Waagen, pl. XXVIII, fig. 2 and pl. XXXII, fig. 4) reveal very broad, strongly rursiradiate costae, and a suture-line like that of M. greppini, P. de Loriol (51a), thus suggesting affinity with a tumid Quenstedtoceratid stock (compare e.g., Quenstedticeras(? tumidum, Reeside) (80). Direct connection, perhaps, is improbable, but at any rate the stocks here discussed seem more closely allied to the family Cadoceratidae and especially its branch Pachyceratidae, than to the group of 'Perisphinctes' praecursor, Waagen. This was included in Grossouria by Siemiradzki (87a), but may be nearer to Poculosphinctes, S. Buckman and the writer was at first inclined to regard it as the ancestor of the maya-group.

For this latter group the new genus

Mayaites, gen. nov.

(genotype A. maya. J. de C. Sowerby, 1840, Trans. Geol. Soc. (II), vol. v, pl. lxi, fig. 8, B. M. No. 10074, Geol. Soc. Coll.) is proposed. Waagen's "Steph." maya is thinner and has finer secondary costation than Sowerby's type, and is here renamed M. Lemoini, n. n. Apart from this typical group represented by twenty-seven examples, and comprising in addition, 'Macrocephalites' rotangi and batavo-indicus, Boehm (4b), 'M.' subtrapezinus, Lemoine non Waagen, and, probably, 'Kossmatia' uhligi, Lemoine (48b), and the East African forms figured by Tornquist (96) &c., the genus Mayaites includes also the compressed M. transiens (Waagen) and allied species (15 examples), further the depressed M. subtumidus Waagen sp. To the last species represented by eleven examples, some being varieties, also belongs A. herveyi, J. de C. Sowerby, 1840, p. 719 (woodcut), No. 10067, non A. herveyi, J. Sowerby 1818, nec A. herveyi, J. de C. Sowerby, 1840, pl. xxiii, fig. 5 (= Macrocephalites tumidus (Reinecke) Waagen, see ante).

The group of Mayaites polyphemus, Waagen sp., which grows to gigantic size and shows a striking similarity to Tornquistes on the outer whorl, is represented by two examples.

Some new forms, of Otoites-aspect, are coarser in costation than the typical young Mayaites, and widely umbilicated, i.e., are close to the young "St." elephantinum, figured by Waagen on pl. XXXII, fig. 4. The type of A. elephantinus, Sowerby (No. 9977, Geol. Soc. Coll.) unfortunately does not show the suture-line, but with a number of ribs equal to that of Waagen's specimen

1 'M' waageni and 'M' kitchini, Uhlig (98a) probably belong to Grypiceras.
(pl. XXXI, fig. 3) there is a decided sinus forward peripherally and the costae are very sharp. The new genus:—

**Dhosaites, gen. nov.**

is proposed for this *elephantinus*-group, connected with the genus *Mayaites* by forms like No. 266, somewhat resembling the evolute varieties of "*M.*" palmarus, and "*M.*" cocos, Boehm. The genus also includes *D. grayi*, n. n. (= *Steph. nepalensis*, Waagen non Gray, p. 136, pl. XXXV, fig. 2, No. 279) and a new intermediate species (No. 322). The last two shew a striking resemblance, except in suture-line, to the Callovian group of *Macrocephalites dimerus* and *M. magnumblicatus*, Waagen sp.; Lemoine, indeed, considered the closely similar *D. bambusae*, Boehm sp. to be near to the Callovian species, though Boehm had correctly compared it to Waagen's "*Steph. nepalensis*." Boehm's (7b) comparison of *D. bambusae*, however, to the true *Macrocephalites mantavaranus*, Boehm, of the *formosus*-group, is less fortunate.

'Stephanoceras (*Ammonites*) macrocephalus' recorded by Newton (60) from North of Andranosamonta, Madagascar, may represent a globose development of *Dhosaites*, but in the bluntness of its ribs resembles *Tornquistes*. It is distinct in matrix from the ammonites described by the same author from South of Ankaramy, also preserved in the British Museum, namely, "*Steph. calloviense*," (perhaps *Mayaites tenuicostatus*, Boehm sp.) "*S. macrocephalum*" and "*S. hervynii*"; one example of the last species (No. C. 3589) possibly identical with "*Macrocephalites*" *elephantinus*, of Lemoine and thus a *Dhosaites*.

The Mombasa fauna, according to the rich collections in the British Museum, includes an undescribed species (No. C. 10988) that is transitional in shape and ornamentation from *Mayaites olecostephanoides*, Tornquist, to *Dhosaites*.

In connection with the genera *Mayaites* and *Dhosaites* it may be convenient to refer to *A. fissus* and *A. opis*, Sowerby, and to a number of other groups that have erroneously been attached to the Upper Jurassic "*Macrocephalites*." Sowerby's type of *A. fissus* (pl. LXI, fig. 11, B. M. No. 10077, Geol. Soc. Coll.) is poorly preserved but quite unlike Waagen's figure of the same species (pl. XXXVII, fig. 1, p. 134); for whereas the latter shews a smooth periphery on the body-chamber, bringing it close to *A. opis*, Sow. the holotype has extremely coarse and blunt ribbing across the siphonal area of the body-chamber. This type of costation is not found in any other Indian form known to the writer, but in some Portlandian Perisphinctids of the *gorei* and *pseudogigas* zones, and possibly pathological. The wide external saddle of the suture-line of this doubtful species is somewhat like that of *Eucycloceras eucyclum* (Waagen, pl. XXXV, fig. 1c).

*A. opis*, Sow. was apparently confused by Waagen with the Callovian *Eucycloceras*, but his Argovian form, as represented probably by the last quarter of a whorl of the example depicted on pl. XXXVI; fig. 1a, is before the writer in a specimen from Kalabagh (Dr. Fleming Coll., Geol. Soc. 9377. "below Coal.
Shale," 65). The new genus **Subkossmatia** (genotype: *A. opis*, Sowerby, non Waagen, 1840, pl. XXIII, fig. 9, B. M. No. 9980, Geol. Soc. Coll.) is proposed for this stock, perhaps allied to the unconstricted Upper Argovian “Idoceras” of the *planula*-group. Sowerby’s type does not shew the weakening of the costae on the periphery, characteristic of Waagen’s form and found also in Waagen’s “*Steph.*” *fissum*. doubtfully included in this genus. Both these species will require new specific names, if the figures are reliable.

The peripheral aspect and distinctive ribbing of these forms of **Subkossmatia**, to which may perhaps be added *S. alforica*, Boehm sp. suggest that they are not related to *Maya*ites of the transiens-group as Waagen and later authors held. **Subkossmatia** is provisionally included with Ringsteadia in the family Idoceratidae, n.

Some forms of the genus *Dhosaites* superficially resemble *A. nepalensis*, Blanford (3) non Gray (= *blanfordi*, n. n.) refitted as “*Simbirskites*” *nepalensis*, Gray, by Uhlig. The new genus **Grayiceras** is here proposed for this development (genotype: *G. blanfordi*, n. n. = *Simbirskites* *nepalensis*, Blanford non Gray, in Uhlig (98), pl. XLV. A, fig. 1, B. M. No. 1016, Geol. Soc. Coll. 22). This Tithonian development has no affinity with the later, equally sharply ribbed, but tuberculate genus *Simbirskites* of the family Olocostephaniidae, to which Uhlig had referred it with a number of allied species. “*Simbirskites*” *mexicanus*, Burkhardt, from the *Durangites* Beds, is very close to Gray’s type of *G. neapolense* (B. M. No. C5052) and also belongs to the genus **Grayiceras**.

The genus *Kossmatia*, Uhlig, which includes only *K. tenuistriata*, Gray sp. (genotype, see 35 and Crick 22 and 23), *K. desmidoptycha*, Uhlig, *K. richteri*, Oppel sp., and such Mexican and Crimean forms as *K. victoris*, Burckhardt sp. (16 & 17) and *K. pontica*, Retowski sp. (81) is not represented in the Blake Collection. Like *Durangites*, it may belong to the family Berriasellidae, and it shews close resemblance to the Tithonian Spiti-Shale genus *Paraboliceras* (type: *P. jubar*, Strachey-Blanford sp., B. M. No. C. 5043) which probably is closely allied to *Berriasella*. The resemblance of *Paraboliceras* *propinquum*, Uhlig sp. to *Grossouwria* is merely an illustration of homeomorphy, and it may be added here that the ammonite from New Guinea, figured by Etheridge (31) as allied to *A. lingulatus* (Quenstedt) probably belongs to a species morphologically intermediate between *Kossmatia desmidoptycha* and the genus *Paraboliceras*. It was compared by Etheridge to *A. leai*, Forbes (34) but that species (holotype in B. M. Geol. Soc. Coll.) is a Barremian *Pulchellia*, close to *P. didayana* (d’Orbigny) Kilian (42).

**Reineckeidae.**

The family is represented by five examples of the Callovian genus *Reineckeia*, one (413) of which seems to agree with J. de C. Sowerby’s type of *R. artictrica* (B. M. No. 9981, Geol. Soc. Coll.). *A. artictrica*. d’Orbigny (68) = *R. gigonda-
sensis. Steinmann is a far more coarsely ornamented form than Sowerby's species, the latter being closer to R. rehmanni, Oppel sp. (67), which, according to Reuter (77b) occurs below R. anceps and the (still higher) Collotia fraasi (zone of Kosmoceras castor and K. pollex). Two fragmentary examples probably also belong to the rehmanni-group and are compared to R. nodosa, Till, which is a close ally of Sowerby's and Waagen's forms. It may be added that the latter author's R. arthritica, separated from Sowerby's type by Lemoine (48d) may be a badly drawn example of the same species.

A young Reineckea cf. anceps (auct.) (365) is just a trifle too much inflated for R. stuebeli, Steinmann; another (404) can be referred to R. cf. greppini (Oppel) Lemoine, and a fragmentary specimen probably represents a large perisphinctoid form of a Reineckea or Collotia.

The family Reineckeedae should probably include also Erymnoceras, Hyatt and Oecoptychius, Neumayr, referred by Buckman respectively to Pachyceratidae and Morphoceratidae (10b, 11d).

**Parapatoceras, gen. nov.** (type: A. calloviensis, Morris, Ann. Mag. Nat. Hist. (1), Vol. V, 1846, p. 32, pl. VI, fig. 3) was included by Hyatt with the Bajocian Spiroceras, Quenstedt, 1858, non Meek (genotype: S. bifurcatum Quenstedt) and occurs also in Kachh. It is believed that Parapatoceras is not a descendant of the earlier Parkinsonid Spiroceras, but, as seems more likely from stratigraphical considerations alone, an independent development perhaps of the later family Reineckeidae.

The genus “Perisphinctes” s. l. is represented by 311 examples, or more than half the total number of specimens, here referred to several families. The earliest perisphinctoid genera, of the families Parkinsonidae and Zigzagiceratidae, are not represented. Two fragmentary examples, with strongly projected peripheral ribs, resemble P. hians, Waagen (pl. LVII, fig. 2) which looks somewhat like Procerites; but another large new species, labelled by Prof. Blake "possibly A. mutans" (327), and having the suture-line and general appearance of P. hians, possesses inner whorls that point rather to the later Grossouria-stock and it is thus surmised that these large specimens represent adult Kinkel AEeras.

For the Grossouria-stock and its important branches, to avoid giving a new name, Mr. Buckman’s family term:—

**PROPLANULITIDAE** emend.

is here adopted, and the genera included in this family are: Siemiradzkia, Hyatt; Grossouria, Siemiradzki; Subgrossouria, nov.; Villanya, Till; Choffatra, Siemiradzki; Obtusicostites, Kinkelliceras, Crassiplanulites, Buckman; Proplanulites, Teisseyre; Binatisphinctes and Hamulisphinctes, Buckman. The Bathonian genus Siemiradzkia, including the very variable group of A. aurigerus, Oppel (Grossouvre, 37b) is probably not directly related to Ataxioceratidae, with which family Buckman (11b) had united it.
**Pictonidae**, fam. nov., comprising among others the genera *Pictonia* and *Rasenia*, which were included here by Buckman, (11c) (and to which must perhaps be added *Gravesia*) in the writer's opinion represent a distinct group, more closely connected with *Aulacostephanidae*, fam. nov.

This family *Proplanulitidae*, as here understood, is well represented. Twenty-two examples agree with the typical *Grossouvia*, e. g. the Balin forms, *G. balinensis*, *G. enyptycha* and *G. furcula*, Neumayr sp., *G. junata* (Oppel) Waagen sp., *G. graciosa* Siemiradzki, *G. anomala*, Loczy sp. and *G. lateralis* (Waagen). *G. calva*. Sowerby sp. (B. M. No. 10075, Geol. Soc. Coll.) and its probable close ally *G. indica*, Siemiradzki (= *Perisphinctes spirorbis*, Waagen non Neumayr, pl. 1, fig. 1 non. 2) belong to this group, whereas six other examples are close to the rather distinct *G. (?) congener*, Waagen sp. and *G. (?) undulatocostata*, Milachewitch sp. (56).

Twenty-two mostly small specimens of the group of *Crossoviria curvicosta*. Waagen non Oppel (= *G. anomala*, Loczy, pars) come from higher beds. Some of these, however, may belong to *Perisphinctidae* (*Poculisphinctes*). It should be pointed out here that Reuter (77b) records, e. g. *G. subtilis*, Neumayr sp. from both the "zone of *M. macrocephalus" and from the "zone of Kosmoceras ornatum."

For *P. aberrans*, Waagen, pl. XL, fig. 1, non. 2 (= ? *Perisph. jupiter*, Loczy, non *A. jupiter*, Steinmann) represented by specimen 339 (genoholotype) which shows extremely evolute inner whorls, the new genus *Subgrossouvia*, gen. nov. is proposed. Another specimen (351), between *S. morley-daviesi*, n. n. (= *P. aberrans*, Waagen, pl. XLI, fig. 2 only) and *S. coronaeformis*, Loczy sp. (50b), and only a little stouter than *S. villanoides*, Till sp. (95), also belongs to this genus. *A Hamulisphinctes* sp. (*A. maritimus*, Bean MS.) in the British Museum (39530) has some resemblance to these forms.

In addition to one example of *Choffatia cf. cobra* (Waagen) from W. of Kotai, anceps-zone (429), there are forty-four specimens of *Obtusicostites* and *Kinkeliniceras*. *Obt. paramorphus*, Waagen sp. (No. 416) has inner whorls of the type of *Grossouvia subtilis* (Neumayr), and the genus *Obtusicostites* includes also *O. obtusicosta* (genotype) e. g. No. 391, *O. buckmani* n. n. (= *P. obtucicosta* : Waagen, pl. XXXVIII, fig. 3 only), e. g. No. 375, *O. anggaster*, Waagen sp. and *O. dhosaensis* Waagen sp. The last is close to the group of 'Perisphinctes' omphalodes, Waagen, with a number of new species; and Mr. Buckman includes 'P.' omphalodes in *Obtusicostites*. But the omphalodes-group is scarcely separable from the mutans-group (wrongly quoted by Waagen as of Katrol age) and from the genus *Kinkeliniceras*, which latter is represented by *K. cf. pendambilianum*, Daqué sp. *K. ? mutans* is quite different from *Grossouvia indica*, Siemiradzki, and like many other Indian species was misinterpreted by most authors. The more compressed species of this group greatly resemble *Grossouvia* of the type of *G. cf. junata* (Oppel) Waagen sp. (pl. XLVII, fig. 2), but the young whorls of the aurigerus-type are characteristic.

One Callovian specimen (493) resembles *Grossouvia? pseudorion*, Waagen sp., but is thinner, and has the costation interrupted on the periphery. Another
form (No. 447) from the athleta beds of No. 2, S. Maujal, resembles the much later *Ataxioceras*, e.g. an example of *Ataxioceras schilli* (Oppel) Siemiradzki from Pamproux, Deux Sèvres, in the Blake collection; but its ornament is distinctly biconcave forwards. These two forms cannot be placed in any of the known genera.

The great majority of Argovian Perisphinctoids from the Dhosa Oolite and Kantcote Sandstone belong to the family:

**PERISPHINCTIDAE, s. s.**

connected (morphologically) with the *Grossouvia* assemblage of the family *Proplanulitidae*.

Especially the group of *Perisphinctes plicatilis* (Sowerby) Waagen is well represented and includes numerous examples of *P. rota*, Waagen, *P. obliqueplicatus*, Waagen and *P. indogermanus*, Waagen, *P. plicatiloides*, O'Connell (64) and *P. cf. stenocycloides*, Siemiradzki, further transitional forms to *P. wartae*, Bukowsk and *P. grossouvrei*, Siemiradzki. This group of forms may indicate a slightly higher horizon (zone of *P. cf. wartae, triplex* &c. in Salfeld) (83) than the less numerous group of *P. martelli* (Oppel), which includes also *P. cf. marcoui* (de Loriol) Ronchadzé (82) *P. cf. occultefurcatus*, Ronchadzé non Waagen, *P. orbignyi*, de Loriol, &c. Both the above groups are provisionally left in *Perisphinctes* (including *Dichotomoceras* and *Kraaosphinctes*, Buckman) and this genus is here taken to include also the group of forms that is represented in the present collection by *P. subevolutus, subcolubrinus* and *pagri*, Waagen and *P. bernensis*, de Loriol. The latter assemblage is connected with the first group of *Perisphinctes* by forms allied to *P. indogermanus*, Waagen. A number of young or poorly preserved specimens cannot be definitely classed as *Perisphinctes* s. s.

The forms referred to above as near to *P. wartae* (Bukowski) and *P. grossouvrei* (Siemiradzki) lead to the groups of *Ataxioceras* (?) *virguloides*, Waagen sp.; *A. cf. praestenocyclus*, Dacqué sp. (28), *A. leiocymon* (Waagen) and *A. lucingensis* (Favre), here classed with the family:

**ATAXIOCEBATIDAE**, Buckman emend.

Some of the more involute, young Ataxioceratids, however, may belong to *Discosphinctes*, Dacqué, or to *Involuticeras*, Salfeld, also included in this family and certain transitional forms recently figured by Fischer (33) indicate that *Sutneria* may also belong to the family *Ataxioceratidae*. From both Kantcote and Barodia, there are represented in the collection Perisphinctids of several (Argovian and later) horizons, including the genus *Biplices* (*tiziani*-group), mingled with a number of developments of Ataxioceratids, comprising probably *Planites*, e.g., *Pl. cf. polyplacoides* and *Pl. polyplacoides-unconditus* (Fontannes) Choffat sp. 19.)
It may here be added that one of Choffat's figures is cited by Siemiradzki in the synonymy of *P. polygyratus* (Reinecke) which is the genolectotype of *Planites*. But Siemiradzki's "Mutationsreihe des *Per. polygyratus*" for which Buckman (10a) reintroduced de Haan's *Planites*, includes a heterogeneous assemblage of forms belonging to different families.

The correct identification of genera and species, however, is not easy, e.g. the very common 'Perisphinctes' *virguloides*, Waagen, though doubtfully classed with *Ataxioceras*, is apparently very close to *Perisphinctes chloroolithicus* (Günbel) non Waagen, as refiugured by Reuter (78) and Klebelsberg (44), a characteristic form of the *transversarius* beds, belonging to the true Argovian *Perisphinctida*.

Perisphinctids and Ataxioceratids may be very similar, and when, as in Kachh, they are all preserved in the same red ironstone, identification of young specimens may become impossible. Well-preserved adult examples, however, enable us further to separate from the Kimmeridgian Ataxioceratids here discussed, the two allied groups of *A. torquatus* (Sowerby), included by Uhlig in *Aulaconsphinctes*, the type of which probably belongs to a different family; also of *Amm. pottingeri*, Sowerby, grouped by the same author with *Virgatosphinctes*.

The group of *A. pottingeri*, Sowerby, "Peris." *katrolien*is, and 'P.' *euphokus*, Waagen, with very depressed inner whorls, is here separated as *Katrociceras*, gen. nov. (genotype: *A. pottingeri*, J. de C. Sowerby, 1840, p. 183, pl. LXI, fig. 1, B. M. No. 10076, Geol. Soc. Coll., wrongly compared by d'Orbigny (Prodrize, I, p. 329) to the Peltoceratid *A. chauvinianus*). It is well represented in the present collection, as also is the group of "*Perisphinctes* torquatus" (Sowerby) Waagen, and *P. bathyplocus* Waagen. The latter group further includes *P. occul- furcatus* and *alterneplicatus*, Waagen, recently recorded from Persia by Fischer (32), further possibly, *P. bleicheri*, (de Lorio) Waagen, and *P. eudichotomus* (Zittel) Waagen. For this group is proposed the new genus:—*Torquatisphinctes*, gen. nov. (genotype: *A. torquatus*, J. de C. Sowerby, 1840, pl. LXI, fig. 12, B. M. No. 10078, Geol. Soc. Coll.). Such forms as *P. (Aulacosphinctes)* *cf. kokeni* (Behrendsen), *P. (Aulaconsphinctes) bangei*, and others from the "Lower Portlandian" (= Middle Kimmeridgian) of Mexico, described by Burckhardt (18), show great resemblance to the Kachh species. A new form (No. 439) from the Middle Kimmeridgian Belemnite Marls of Joorun associated with *Torquatisphinctes torquatus* (Sowerby), *Torq. alterneplicatus* (Waagen) *Physodoceras* *cf. binodiferum* (Waagen), *Neumayriceras kachhense* (Waagen) &c., connects this group with the genus *Planites*, so that *Torquatisphinctes* and its ally *Katrociceras* are referred to the family *Ataxioceratidae*.

It may be added that *Physodoceras* *cf. binodiferum* (Waagen) from Joorun is almost indistinguishable from *Ph. bispinosum* (Quenstedt) (76c) of the White Jura *eudocus* or *pseudomutabilis* beds of north-western Europe; also that Crick had compared his Arabian 'Perisphinctes' *cf. torquatus* (25) to forms of the "*tenuilobatus* zone." The Middle Kimmeridgian *Torquatisphinctes* is more
or less homoeomorphous with the Argovian *Perisphinctes*, but the inner whorls alone cannot be satisfactorily determined in any of these genera.

Uhlig’s *Perisphinctes* (*Aulacosphinctes*) torquatus (non Sowerby) (98b) belongs to a group of forms probably unrepresented in the Kachh fauna. The new genus *Aulacosphinctoides*, gen. nov. is proposed for this group (genotype: *A. infundibulus*, Uhlig p. p. = *A. biplex* (Sowerby) Blanford, in Salter & Blanford: “Pal. Niti,” 1865, pl. XI, fig. 1, B. M. Coll. 5033 = *Perisphinctes* cf. *biplex* (Sowerby), in Reed (79). Its inclusion by Uhlig in *Aulacosphinctes* (genotype: *A. mörickianus*, Oppel, Uhlig, pl. XXXVIII, fig. 6) was admittedly provisional. Referable also to *Aulacosphinctoides* may be the New Zealand *Perisph. brownei*, Marshall (54, 6b), and some allied forms mentioned by the writer (94), but an example comparable to *Aulacosphinctes* *spedicosta*, Uhlig, from “Argillaceous Limestone Level behind Tai Parit, Bau, Upper Sarawak, Borneo” (J. B. Scrivenor, Coll. B. M.) and associated with two *Lithacoceras* is probably a *Pseudovirgatites* and of *denubiensis* to *ulmensis* date. The typical *Aulacosphinctes* may be close to the ancestral stock of *Bliandriceras*, n. n. olim ‘Blanfordia’ preoccupied and other *Berriasellidae*, and are excluded from *Ataxioceratidae*.

This family, however, includes *Lithacoceras*, Hyatt, created for the Middle Kimmeridgian *ulmensis*-group. This genus seems to lead to Uhlig’s *Virgatosphinctes* here restricted to the Tithonian group of *V. minusculus*, Uhlig. (98c). It is probably represented by nineteen examples, mostly *V. (?) deneplecatus*, Waagen sp. Both *Lithacoceras* and *Virgatosphinctes* are characterised by the slender elements of their minutely indented suture-lines. In the group of *Perisphinctes castlecottensis*, Saifeld, of post-nikitini age, resembling *V. (?) deneplecatus*, but probably more closely related to the Upper Kimmeridgian *Virgatitidae*, the suture-line is considerably simplified.

The connection with *Ataxioceratidae* of the genus *Pseudovirgatites*, Vetters (99) non Schneid (86) including e. g. *P. scroopus, scorsus* (Oppel) and *P. densistriatus* (Burckhardt, 15a) is uncertain. It probably includes other Mexican and Argentinian forms recorded by Burckhardt (16, 15b), and Douvillé (30) and undescribed species in a Somaliland Collection before the writer, associated with other unnamed Kimmeridgian perisphinctoids.

Contrary to the opinion of Douvillé (69) the family

*Virgatitidae*, nov.

is not represented in Kachh, since apparently there is a gap in the succession after the Middle Kimmeridgian. This family includes besides the typical *Virgatites* (genotype: *V. virgatus*, v. Buch sp.) and a number of other developments, with simplified suture-lines, yet to be separated, the new genus *Pallasiceras* nov. (genotype: *P. rotundum*, J. Sowerby sp., 88, p. 169, pl. CCXCIII, fig. 3, as represented by No. 345, L. F. S. Coll., the holotype being worn). This ‘*biplex*’ or ‘*pallasiatus*’ stock was recognised by Uhlig as distinct from *Virgatites*, but d’Orbigny’s type of *A. pallasiatus* (69) unfortunately is poorly preserved.
and forms associated with it by Douvillé (69) and Michalski (55) are true Virgatites of an earlier horizon. Miss Healey's (39) 'Olcostephanus' pallasianus (d'Orbigny) var. nov., on the other hand has the ribbing of Pallasiceras, but not its 'inverse' and greatly reduced suture-line, and the British Museum specimens of Pallasiceras from near Moscow (e.g. Nos. 33497, C 2370, 19601, 22620), probably belonging to unnamed species, differ from d'Orbigny's type in having a depressed whorl-section, also in details of ribbing. According to Prof. Blake's collection Pallasiceras is not represented in the Kachpur sequence (71a).

The outer whorls of Pallasiceras resemble those of the earlier Holcostephanoideos, gen. nov. (type: Ol. acuticostatus, Michalski, 55, p. 71, pl. V, fig. 5, B. M. No. 33498, Murchison Coll.) proposed for a group of 'Virgatites' with coronate inner whorls, but no bundling of ribs. On the other hand, Epivirgatites, gen. nov. (type: 'P.' nikitini, Michalski = 'Perisphinctes' polygyratus (Trautschold?) Pavlov 71b, B. M. No. C 23283) from just above the virgatus horizon, has perisphinctoid inner whorls, similar to those of Pallasiceras, but these are retained, together with a well-individualised second lateral lobe, and pronounced umbilical projection of the suture-line. The poorly-preserved 'Virgatites' recorded by the writer from Spitsbergen (93) probably belong to this genus.

Numerous specimens of Epivirgatites nikitini are in the Blake Collection, from beds 2 and 3 of Kachpur, still associated in the former with true Virgatites. Certain coarsely-ribbed forms of the panderi-group are morphological transitions from Epivirgatites to the later, more simplified Pallasiceras.

From these Virgatitids are to be separated the Craspeditidae, fam. nov., including Craspedites, Pavlow, (') Subcraspedites, gen. nov. (genotype: A. plicomphalus. Sowerby, 88, pl. 404, B. M. No. 43892b), Garniericeras, n. n. (olim 'Garnieria' preoccupied) (lectotype: 'Oxynoticeras' catenulatum, Trautschold sp.) and Kachpurites, gen. nov. (type: 'Neumayria' fulgens, Trautschold, Nikitin, 62). On the other hand, the genus Subneumayria, nov. (type: 'Neumayria' ordonezi, Burckhardt, 16, p. 11, pls. I & II) does not belong to the Craspeditidae, or the Polyptychitid genera Nikitioceras, Sokolov (= Temnoptychites, Pavl.) and Neocraspedites, gen. nov. (type: 'Craspedites' semilaewis v. Koenen, 45).

The families Virgatitidae and Craspeditidae are outside the scope of the present paper, but in connection with their absence from Indian deposits an interesting question arises. Do the Spiti Shales comprise the Middle Kimmeridgian, followed non-sequentially by Lower Berriasian strata? Compared with the presumably missing Upper Kimmeridgian and Portlandian below, and part of the Valanginian above, this Berriasian portion of the Spiti Shales would represent but a small period in the ideal time-scale. Information at present available and the extraordinary incompleteness of the Jurassic record as a whole, favour the view that the Spiti Shales very incompletely bridge the gap from the Upper Jurassic to the Lower Cretaceous. Present opinion, however, accepting the "boreal"
ON THE BLAKE COLLECTION OF

class of Virgatitidae and Craspeditidae, and relying on such unsatisfactory
evidence as e. g. the presence of ‘Aucella of the mosquensis group’ in the Lower
Berriasian Durangites-Promiceras-Kosmocria beds of Mexico (probably correspond-
ing to the Paraboliceras beds of the Spiti Shales) assumes the correspondence
in time of the latter with the Epixirgratites or Kachpurites beds of Russia, them-
selves separated by a large number of hemerae not realised by Lahusen (46). The Epixirgratites beds probably follow below the “Lower Tithonian” portion of the
Stramberg sequence, with the Upper Kimmeridgian genera Pseudovirgatites, 
Simoceras etc.

The family

**PELTOCERATIDAE, nov.**

is represented by 20 examples, belonging partly to the typical group of Peltoceras
athleta (Phillips), also occurring in the “Kelloway Rock” of Scarborough (12)
and referred by Reuter (77c) to the “zone of Kosmoceras ornatum”; partly to
the group of ‘P.’ semirugosum Waagen and ‘P.’ arduennense (d’Orbigny). It seems
advisable to separate the latter Argovian group from the true earlier Peltoceras
and the new genus Peltoceratoides, gen. nov. is here proposed (genotype : P.
semirugosus, Waagen, pl. XIV, fig. 1, B. M. No. 175, Blake Coll.) P. arduenn-
ensis (d’Orbigny) is distinguished from P. semirugosus merely by retaining
throughout the same typical ornamentation. P. constantii (d’Orbigny) de Larol sp.
(51b), P. instabilis (Uhlig) Lahusen sp. (47), also P. cf. athletoides (Lahusen)
de Larol sp. (51c) are other forms represented in the Kachh Jurassic (Dhosa Oolite).

The holotype of Sowerby’s A. armiger (89, fig. 13 on plate, reduced to one-half, fig. 11 in description, B. M. No. 9982, Geol. Soc. Coll.) has an outer
whorl like Peltoceras diversiforme (Waagen) but the medium-sized whorls are
unrecognisable and the inner whors are unlike those of any described Peltoceras,
except possibly those of P. nigerianum, Dacqué (27a).

The Peltoceratids were excluded from ‘Aspidoceratinae’ already by Salfeld
(84) and in the family Peltoceratidae is here comprised the new genus Gregory-
ceras, established for the Argovian group of ‘Peltoceras’ transversarium, Quenstedt
(75) which includes e. g. the ammonites described by the writer (91) from Tunis.
For the later A. bimammatus Quenstedt (76b) the new genus Epipeltoceras is
proposed, the holotype to be an example in the British Museum (No. C. 22359,
Blake Coll.) from Château Neuf, France.

**Aspidoceratidae.**

The genus Aspidoceras is represented by fifteen examples, among them A.
perarmatum, Waagen non Sowerby sp., A. cf. indorossicum, Borissjak, A. cf.
ponderosum (Waagen) Borissjak (9), A. sparsispinum, Waagen, A. cf. perispino-
toides (de Laroi), and a fine series of specimens of A. tenuispinatum, Waagen,
from the Kantcote Sandstone, very close to A. nikitinitianum, Borissjak, and A.
ægir (Oppel) in de Larol (52).

The genus Physodoceras includes six examples, referable to Ph. binodiiferum,
Waagen, from the Katrol group, a species briefly referred to on page 15.
The family **SIMOCERATIDAE**.

is represented by *Waagenia* sp. n. aff. *hybonota* (Oppel) from the Upper Katrol Group = (Middle Kimmeridgian). It is possible that the fragment figured by Waagen (pl. XXI, fig. 4) as *Aspidoceras* sp. ind. belongs to a larger example of the same species. The perisphinctoid genera of this family do not seem to occur in Kachh.

The Cretaceous forms in the Blake Collection include one fragmentary example of a *Cheloniceras*, allied to *A. martini* (d'Orbigny) in Waagen (family *Parahoplitidae*), and seven examples of *Ancyloceras*, including "*Crioceras*" *australe*, Waagen non Moore. They come from the "Top Beds" of Artara. The *Crioceras*? (B. M. No. C. 9297) figured and described by Crick (24) from the N. W. Indian Frontier, apparently has no affinity with the Kachh forms. It is worn to such an extent as to be quite unrecognisable.

The two Tables below show (I) the approximate distribution of the various genera here discussed in the different beds, and (II) a rough correlation of the Kachh strata with a provisional list of successive ammonite horizons characteristic of the European Jurassic. The number of 'subzones' could have been increased very considerably, but the correlation of 'boreal' with southern ammonite stocks is still too uncertain, and the axiom that dissimilar ammonite faunas indicate deposits of different dates must be applied with caution in view of the fact that generally only modified derivatives, but not the conservative parent-stocks, occur beyond the Tethys. The Dhosa Oolite almost certainly comprises only some of the Argovian hemerae, indicated in Table II, between *arduennensis* below and *achilles* above, not an unbroken sequence.

### Table I.

**Distribution of Ammonite Genera in the Jurassic Strata of Kachh.**

(Some records [W] are added on Waagen's authority.)

<table>
<thead>
<tr>
<th>Families and genera</th>
<th>Patcham</th>
<th>Dhosa Oolite</th>
<th>Katrol Grp.</th>
<th>Umia Grp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylloceratidae :</td>
<td>Phylloceras</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lytoceratidae :</td>
<td>Lytoceras</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oppelitidae :</td>
<td>Alcidia</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hecticoeceras (Putalicioeceras)</td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td><em>Lusuloceras</em></td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trimarpsinules</td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hecticoeceraloides</td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ocotrassales</td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pateloceras</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Phlyticeras</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Taramellitaceae</td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Okeboeras</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Neumayriceras</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glochiceras</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Volgologhiceras</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Strebites</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Macrocephaliidae :</td>
<td>Macrocephalitaes</td>
<td>W</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Euycycloceras</td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kernitecas</td>
<td>W</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
### Table I—contd.

**Distribution of Ammonite Genera in the Jurassic Strata of Kachh—contd.**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Middle</td>
<td>Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pachyceratidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pachyceras</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mayatis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dhosatis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reineckidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reineckia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parapizoceras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Proplanulitidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grossouria</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgrossouria</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheffadia</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtusioceras</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Idoceratidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subhassmatia</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Perisphinctidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perisphinctes</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biptics</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ataxioceratidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ataxioceras</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planites</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katroliceras</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torquiasphinctes</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virgasphinctes</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ataxiosphinctoides</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pelloceratidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelloceras</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelloceratoides</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Aspidoceratidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspidoceras</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physoceras</td>
<td></td>
<td></td>
<td>X</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td><strong>Simoceratidae</strong>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waagenes</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table II.

**Approximate Position of Kachh Strata in Jurassic Sequence.**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tithonian (Lower Berriasian)</td>
<td><em>privusensis</em></td>
<td><em>octonica</em></td>
</tr>
<tr>
<td></td>
<td><em>pronus</em></td>
<td><em>mendozana</em></td>
</tr>
<tr>
<td></td>
<td><em>contigus</em></td>
<td><em>bahrrendsoni</em></td>
</tr>
<tr>
<td></td>
<td><em>gigantea</em></td>
<td><em>tenulatria</em></td>
</tr>
<tr>
<td></td>
<td><em>pseudogigas</em></td>
<td><em>densostratus</em></td>
</tr>
<tr>
<td></td>
<td><em>gorsi</em></td>
<td><em>idoceroides</em></td>
</tr>
<tr>
<td></td>
<td><em>rotundus</em></td>
<td><em>eudicholomus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>chakmaasi</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Spiti Shales, pars).</td>
</tr>
<tr>
<td>Portlandian</td>
<td></td>
<td>Umia Group ? (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kimmeridgian</td>
<td><em>virgatu</em></td>
<td><em>proteratius</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>nicolati</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>virgata</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>mischkowiensi</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>danshengis</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>vimeicus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>ubensia</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>bleicheri</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>beckeri</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>pre-graves</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>phorus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>eudorsus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>pseudomutabilis</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>baldus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>mutabilis</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>polyplocus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>planospina</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>planus</em></td>
</tr>
</tbody>
</table>

(1) Lower part only = Upper Katrol (1)  
(2) Umia Group, (pars) in Waagen (2)
### TABLE II—contd.

**Approximate Position of Kachh Strata in Jurassic Sequence—contd.**

<table>
<thead>
<tr>
<th>Stages</th>
<th>Zones</th>
<th>Subzones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argovian</td>
<td>bimammutus</td>
<td>baylei anglica achilles wartae promiscuus martelli</td>
</tr>
<tr>
<td></td>
<td>transversarius</td>
<td></td>
</tr>
<tr>
<td></td>
<td>perarmatus</td>
<td>goliatthus ardauenensis scarbargense precordatus occulatum vertumnus biculata atlites castor &amp; pollux</td>
</tr>
<tr>
<td></td>
<td>cordatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>athleta</td>
<td></td>
</tr>
<tr>
<td>Callovian</td>
<td>anceps</td>
<td>Mid. Chari Group.</td>
</tr>
<tr>
<td></td>
<td>macrocephalus</td>
<td>Low. Chari Group.</td>
</tr>
<tr>
<td><em>Bashonian?</em></td>
<td></td>
<td>Patcham Group.</td>
</tr>
</tbody>
</table>

(1) Including Kantoote Sandstone.

### LISTS OF AMMONITES.

The names of ammonites from certain Kachh localities, with the numbers of the beds (as marked on the specimens in Prof. Blake’s Collection), and presumable horizons are given below.

I.—Khera (=Keera or Kira).

**Dhosa Oolite—**


**Middle Chari Group—**

No. 3. *Lytoceras* sp. (108); *Reineckeia* cf. *anceps*, auct. juv. (365); *Grossoueria* cf. *lateralis*, W. sp. (362); *Kinkeliniceras* aff. *omphalodes*, W. sp. and spp. n. (360, 1, 3, 4, 6.)


**Lower Chari Group—**


No. 10. *Macrocephalites?* (Eucyclocras?) *subcompressus*, W. sp. (245), *M.? sp. nov. (compressus, auct. non Que.)* (265); *Eucyclocras eucyclum* (W.) and var. (246-7, 249-51).
ON THE BLAKE COLLECTION OF

Lower Chari Group—contd.

No. 11 . Macrocephalites aff. formosus, Sow. sp. (245).
No. 14 . Phylloceras disputabile (Zitt.) W. (86, 7) ; Macrocephalites cf. formosus,
Sow. sp. (240), M. cf. lamellosus, W. non Sow. sp. (239).
No. 15 . Macrocephalites ? sp. ind. (350).
No. 20 . Grossouvieria? congener, W. sp. (349).

“Below Oxfordian” Phylloceras mediterraneum (Neum.) var. indica, Lem. (88) ; Lytoceras
adapoides, Kud. sp. (110) ; Macrocephalites tumidus (Rein.) W. sp. (252),
M. formosus, Sow. sp. (253), M. sp. juv. cf. dimerus, W. sp. (255), M.
chrysoolithicus, W. sp. (256, 7), M. cf. chariensis, W. sp. (254), Grossou-
vieria sp. ind. (372).

(242) ; Grossouvieria ? (Subgrossouvieria ?) aff. evoluta, Neum. sp. (351).

II.—Jamura.

Katrol Group—

Dhosa Oolite—

No. 1 . Phylloceras sp. ind. (94) ; Mayaites maya (Sow.) var. (284) ; Perisphinctes
P. sp. juv. (344) ; Peltoceroidea sp. n? aff. semiunguis, W. sp. (173-4,
205) ; Aspidoceras cf. ponderosum (W.) Bor. (187).

Middle Chari Group—

No. 7 . Subgrossouvieria aberrans, W. sp. (339).
No. 8 . Kinkelinetes aff. omphalodes, W. sp. (335), K. aff. mutans, W. sp. (336) ;
Reineckeia aff. nodosa, Till (337, 8).

(?Middle and) Lower Chari Group—

No. 10 . Phylloceras cf. vicarium, W. (105) ; Alcidia cf. subdisca, d’Orb. sp. (111),
A. cf. subcostaria (Op.) W. sp. (112-3, 15) Hecticosquardoiides suborientalis,
pov. (117) ; Oecotrautes cf. conjungens (May.) W. (114). Macrocephalites
(Eucylloceras?) cf. subcompressus W. sp. (223), M. spp. (235, 6, 6a) ;
Grossouvieria aff. spirothrix Neum. sp. (334).
Nos. 9-11 . Macrocephalites chariensis, W. sp. (222), M. diadematus, W. sp. (226), M.
cf. chrysoolithicus, W. sp. (225, 229).
No. 11 . Macrocephalites chariensis, W. sp. (221, 228), M. cf. diadematus, W. sp.
(234), M. cf. subtrapezium, W. sp. (224), M. dimerus, W. sp. (233),
M. magnumbilicatus, W. sp. (232), M. cf. semilaevis, W. sp. (227),
M. spp. (230, 1) ; Grossouvieria aff. curvicosta, (Op.) W. sp. (331), G.
furcula, Neum. sp. 330, G. patina Neum. sp. (332), G. euryptycha, Neum.
sp. (333).

Lower Chari Group—

Below 12 . Macrocephalites cf. chariensis W. sp. (219), M. sp. (220) ; Grossouvieria ?
aff. congener, W. sp. (329).
No. 13a . Phylloceras sp. ind. (85).
13 or 14a . Macrocephalites madagascariensis, Lem. (217), M. aff. chariensis, W. sp.
(218).
AMMONITES FROM KACHH, INDIA.

III.—Jikadi.

No. 4 . . “Perisphinctes” sp. ind. (617).

Dhosa Oolite—  
No. 20 . . Phylloceras lodaense, W. (97); Perisphinctes cf. martelli (Op.) W. (438),  
P. sp. ind. (282).

Athleta-Beds—  
No. 21 or 22 . . Peltoceras ? sp. ind. (malform.) (186).  
No. 22 . . Phylloceras sp. (204); “Oppelia” sp. ind. (143); “Lunuloceras” sp. juv.  
(144-7); Aptychus (435); Pachyceras? sp. nov.? (381); Grossouwria  
sp. juv. (433-4); Peltoceras diversiforme, W. and var. (171-2, 206).

Middle Chari Group—  
No. 23 . . Kinkeliniceras aff. omphalodes (W.) and var. (432, 436), K.? cf. hians, W.  
sp.? (142).

IV.—Badi.

Dhosa Oolite—  

M. sp. ind. (209, 280); Perisphinctes cf. indogermanus, W. (409, 10, 12);  
Peltoceratoids semirugosus, W. sp. (179, 80), P. cf. athletoides (Lah.)  
de Lor. (181, 411); Phylloceras cf. lodaense, W. (91, 92); Hecticoceras  
punctatum (Stahl) W. (148-50); Mayaites cf. maya, Sow. sp. (278, 408);  
Dhosaites grayi, nov. (279); Peltoceratoids semirugosus, W. sp. (178).


No. 3, Badi . . Mayaites aff. polyphemus, W. sp. (271), M. sp. nov. (272), Perisphinctes  
aff. rota, W. (395-6), Peltoceratoids semirugosus, W. sp. (175, 397),  
P. sp. nov. aff. semirugosus, W. sp. (177).

Middle Chari Group—  
Clay above Low.  
Zone E. Badi . . Kinkeliniceras aff. omphalodes, W. sp. (405).

Low. Zone E.  
Badi . . Macrocephalites? sp. (269); Grossouwria cf. junata (Op.) W. sp. (400);  
(401), K. cf. angiogaster, W. sp. (399).

Low. Zone, Badi . . Obtusicostites cf. dhosaeensis, W. sp. (393); Kinkeliniceras cf. omphalodes,  
W. sp. (394), K.? cf. hians, W. sp. (392).

Nucula Flags W.  
Badi . . Obtusicostites obtusicosta, W. sp. (391).

V.—Wanda.

Dhosa Oolite—  
Zone 1 . . Phylloceras lodaense, W. (95); Lytoceras sp., very large (107); Trismargi-  
nites sp. cf. delemonontanuus, Op. sp. (155-6); Mayaites spp. nov. (458,  
470, 211); Perisphinctes rota, W. (469, 471-2), P. sp. ind. (473), P.  
sp. juv. (474-7); Aepidoceras sparsispinus, W. (188), A. perarmatum,  
W. non Sow. sp.=cf. indorossicum, Bor. (189, 478).

Middle Chari Group—  
Zone 2 . . “Lunuloceras” sp. juv. (130-1, 134-5, 466); Grossouwria spp. juv.  
(462-5, 467).

Zone 3 . . Kinkeliniceras aff. omphalodes W. sp. (460-1).
ON THE BLAKE COLLECTION OF

VI.—S. Maujial.

Dhosa Oolite—

Top Beds


Athleta Beds—

No. 2

Alcidia hurraeensis, W. sp. (119-20); Hecticoceras ? lairense, W. sp. (121-2, 124-5); "Lumuloceras" sp. juv. (127, 208); Oecotraustes cf. conjugens, Loczy (123), Oe. sp. ind. (126), Grossouvria curvicosta (Op.) W. sp. and var. (376, 380-85), G. spp. nov.? (374, 447); Obtusicostites aff. buckmani, n. n. (373, 378); Peltoceras athleta, W. non Phill? (185), P. sp. n. aff. athleta unispinosus, Quenst. (169), P. sp. n. aff. diversiforme, W. (170.)

Middle Chari Group—

Low. Part of Oxfordian.— Obtusicostites buckmani, n. n. (375); Kinkeliniceras omphalodes, W. sp. (379), K. aff. mutans, W. sp. (377).

Nodule Beds

Phylloceras sp. (267).

VII.— Katrol.

Katrol Group—

No. 2, Katrol Hill. Streblites sp. (163); Katroliceras pottingeri, Sow. sp. (506, 509), K. cf. sparsiplicatum, W. sp. (511).


Top of 2, Katrol. Torquatisphinctes cf. torquatus, Sow. sp. (508, 512, 516), T. cf. eudichotomus W. non Zitt. sp. (513), T. cf. blecheri (de Lor.) W. sp. (514); Katroliceras cf. pottingeri, Sow. sp. (510, 515), K. cf. euplocus, W. sp. (507).

2 or 3, Katrol Hill. Torquatisphinctes aff. torquatus, W. non. Sow. sp. (501), T. cf. bathyplocus W. sp. (503), T. sp. ind. (502), T. sp. juv. (504), Katroliceras pottingeri, Sow. sp. (505).

No. 3

Torquatisphinctes aff. torquatus (Sow.) and bathyplocus, W. sp. (500, 521).

Dhosa Oolite—

Top 4, W. Katrol. "Perisphinctes" (Grossouvria?) spp. juv. (522, 524-6).

No. 4, W. Katrol. "Hecticoceras" sp. ind. juv. (207).

VIII.—East Leir (= Ler or Lair).

Middle Chari Group—

Nucula Flags

Grossouvria sp. (490).

In Stream

"Oppelia" cf. orientalis (d'Orb. non W.) = ignobilis W. non Sow. sp. (157a); Kinkeliniceras aff. mutans? W. sp. (157b).

No. 6

Grossouvria? sp. juv. (491).

No. 7

Obtusicostites? sp. juv. (492).

No. 8


Dhosa Oolite—

No. 10

Maysetes cf. maya, Sow. sp. (283), Perisphinctes cf. rota, W. (496), P. sp. ind. (494-5); Aspidoceras sp. ind. (190).

Above 10

AMMONITES FROM KACHH, INDIA.

Katrol Group—
No. 13 .  Torquatisphinctes aff. torquatus, Sow. sp. (498).
No. 15 .  Torquatisphinctes cf. bleicheri (de Lor.) W. sp. (499).

IX.—Jooria.

Dhosa Oolite—
Up. Zone, W.  Phylloceras lodaense, W. (93); Taramelliceras sp. juv. (183); Hectoroceras? punctatum (Stahl) W. sp. (151); Mayaites cf. maya, Sow. sp. (275), M. cf. transiens, W. sp. (389), M. spp. juv. (276, 210); Perisphinctes sp. juv. (390).

Middle Chari Group—
Mid. Zone, E.  Grossouwria cf. graciosa, Siem. (418-9); Obtusicostites paramorphus, W. sp. (416); Kinkelinaiceras cf. omphalodes, W. sp. and spp. (388, 417, 420).
Low. Zone, E.  Macrocephalites (Euycocloceras?) cf. compressus, auct. sp. (268), Reineckeia sp., anceps, W. pars. (404), R. cf. arthritica, Sow. sp. (413); Grossouwria cf. graciosa, Siem. (415); Kinkelinaiceras sp. (398, 414).

X.—Tramau River.

Dhosa Oolite—
Zone 1 .  Mayaites subtumidus, W. sp. (319), M. cf. transiens, W. sp. (320), M. sp. juv. (321).
Top of Zone 1 .  Perisphinctes aff. plicatilis (Sow.) W. (579).
Above Zone 1 .  Dhosaites sp. n. aff. grayi, n. (322); Perisphinctes plicatilis (Sow.) W. (575-6), P. cf. indogermanus, W. (577), P. sp. ind. (578); Ataxioceras cf. virguloides, W. sp. (574); Aspidoceras sp. (580).
BIBLIOGRAPHY.


2. , , , 'Fauna of the Cornbrash.' Mon. Pal. Soc. 1905-07; (a) p. 46, pl. IV, fig. 2, pl. III, fig. 7. (b) pl. IV, fig. 1.

3. Blanford, H. F.—In Salter & Blanford: 'Palaeontology cf Niti &c.' 1865, p. 77, pl. XIV, figs. 1a, b.

4. Boehm, G.—'Beitr. z. Geol. v. Niederländ. Indien.' I, 3, 'Oxford d. Wai Galo.' Palaeontogr. Suppl. IV, Lief. 2, 1907. (a) p. 88, pl. XIX, fig. 3 and pl. XX. (b) e. g. pls. XVIII-XXII.


6. , , , 'Grenzschichten zw. Jura & Kreide.' N. Jb. f. Min. &c., I, 1911, (a) text-fig. 1, p. 18. (b) p. 19, pl. II, fig. 2.

7. , , , 'Unteres Callovien.' Beitr. z. Geol. v. Niederländ. Indien, loc. cit., I, 4, 1912, (a) pl. XXXVI, fig. 3 only (typus). (b) p. 157.


11. , , , 'Type Ammonites.' Vol. III, 1921; (a) p. 266. (b) p. 31. (c) p. 33. (d) 1910, p. 22.


37. , 'Bajocien-Bathonien dans la Nièvre.' ib. (4), Vol. XVIII, 1918. (a) p. 412, pl. XIV, fig. 2. (b) p. 385, pl. XV, figs. 3-8.
49. Lissajous, M.—'Jurass. Maconnais.' 1912, p. 49, pl. VI, fig. 7.
50. Loczy, L.—'A villányi callovien-ammonitesek monogr.' Geol. Hungar. Vol. I, pts. 3 & 4, 1915. (a) p. 302, pl. III, figs. 8 & 9. (b) p. 365, pl. IX, fig. 5, pl. XII, fig. 5.
69. Paleontologia Universalis. 1911, pl. CCVIII, fig. 11.
76. Quenstedt, F. A. v.—'D. Ammon. d. Schwäb. Jura.' (a) 1886, pl. LXXVI, fig. 19, (b) 1887, pl. XCV, fig. 1, p. 881, (c) 1888, pl. CXVIII, figs. 1 & 2.
87. Siemiradzki, J. v.—'Monogr. Perisphinctes.' Palaeontograph. Vol. XLV, 1898. (a) p. 120, (b) p. 167.
90. .. in Sykes.—'A Notice Respecting some Fossils coll. in Kutch, &c.' ib. pl. LXI, and pp. 715-719.
92. .. 'Jurassic Ammonites from East-Africa &c.' Geol. Mag., Vol. LVII, 1920, (a) p. 315. (b) p. 312. (c) pp. 358-60.
93. .. 'Ammonites from Spitsbergen.' Geol. Mag., Vol. LVIII, 1921, p. 351.
94. .. 'Ammon. fr. New Zealand.' Appendix to Trechmann : 'The Jurassic of New Zealand.' (See Proc. Geol. Soc., No. 1074, July 1st, 1921, p. 102.)
100. Waagen, W.—'Jurassic Fauna of Kutch.' I, Cephalop. Mem. Geol. Surv. India, Pal. Indica. 1875 ; (a) p. 123 ; (b) p. 108.