Кошелкина З. В. К вопросу о номенклатуре и систематике юрских ретроцерамид.// Колыма, 1971.- №5.- с. 43-45, 1 рис. (= Koshelkina Z. V. To question on nomenclature and systematics of the Jurassic retroceramids.// Kolyma, 1971.- №5.- p. 43-45, 1 fig.) <bap=27.05.1971>
К вопросу о номенклатуре и систематике юрских ретроцерамид

З. В. Кошелкина
СВКНИИ ДВНЦ АН СССР

Инокерами — широко распространенная в мезозое и вожная для стратиграфии группа ископаемых. Их изучение началось более 200 лет назад. Главное внимание в процессе изучения было уделено выявлению видового состава и значительногом в морфологической — вопросам номенклатуры и особенно систематики. Инокерами — трудная группа для этой цели. Вопросы систематики юрской группы затронуты в немногих работах. К их числу принадлежат исследования Э. Экхольца [5], Л. Ролье [7], В. Ф. Пчелищева [4], И. Р. Кахадзе [1], И. Хацим [6] и З. В. Кошелкиной [2, 3].

Продолжительное время все меловые и юрские ископаемые разделяли на группы по роду Inoceramus, установленного в 1814 г. Совершенно за типовой вид этого рода, исходя из правил priorities, избранный меловой In. cuvieri Bow. В дальнейшем были выявлены характерные особенности строения раковины, в результате чего появилась необходимость в выделении из рода Inoceramus некоторых самостоятельных групп.

Первую такую попытку предпринял Э. Экхольц [5], предложивший номенклатуру. К этому подроду он отнес раковины, вытянутые в длину, а не по оси остров, с макушками, расположенными почти центрально. Позже З. В. Кошелкина [3], учитывая форму раковины и морфологию замка, предложила рассматривать данный подрод как самостоятельный род.

В 1914 г. Л. Ролье дал обзор юрских инокерами. Подавляющее большинство видов он отнес к роду Inoceramus, применяя лишь к In. polypectus Roem. подводное название Mytiloleces (раковина округлая или округлово-овальная, почти равноопорядочная с частыми концентрическими складками). При сравнении этого подрода с другими таксонами интерес представляют рассуждения Л. Ролье, в результате которых становится очевидной некоторая неопределенность диагноза нового подрода [7].

Всего за Л. Ролье это подводное название, существо 34 года после первой публикации, применим И. Р. Кахадзе [1] при описании интересной коллекции из юрских Кавказа. Названный палеонтолог рассмотрел только три вида, из которых все оказались новыми. Здесь уместно отметить, что И. Р. Кахадзе обратил внимание на широкое распространение в Грузии не подрода Mytiloleces или рода Inoceramus, а своеобразных Mytiloides.

В 1960 г. японский палеонтолог К. Хами назвал группу In. (Myt.) polypectus Roem. (subbivalved черепа и привилегированная скульптура), отметив, однако, что она, по его мнению, происходит от форм, близких к Posidonia, либо других иноцерамидных групп, в чем он, кстати, не уверен. В составе этой группы И. Хами описал один вид — In. (Myt.) karakusuensis Miura, а также, к подроду Mytiloleces. В связи с тем, что этот вид имеет мало общего с Mytiloleces, З. В. Кошелкиной и З. Д. Москленко он был из этой группы исключен. Любопытно заметить, что, классифицируя основной состав юрских видов, И. Хами не был счтен распространен подводное название Mytiloleces на всех юрских инокерамида, а, наоборот, все основные из них группы уверенно отнес именно к подроду Inoceramus, подвиду Lusca Quenst., In. lucifer Eichw., In. retorsus Keys., In. neoicosimis Orb.). Классификация И. Хами отличается определенной гибкостью, так как предусматривает выделение групп.

При исследовании бореалль инокерамида остатки группы In. (Myt.) polypectus Roem. встречены не были, поэтому, естественно, автор в своих работах не касался этого названия. Однако в лагерштейнах номенклатура по поводу Mytiloleces автор вполне солидарен с мнением профессора В. И. Бодылевского, которое нельзя игнорировать. Это мнение известно палеонтологам. Напомню лишь, что В. И. Бодылевский, как и автор, считает это название пригодным для ограниченной группы форм, которую следует рассматривать, возможно, как самостоятельный род (4).

Своебразной является также группа видов из юрской Кавказа, изученная В. Ф. Пчелищевым [4]. Как стало очевидным из рассмотрения коллекций, группа обладает мутуальнообразной формой раковины, слабой скульптурой, относительно небольшими размерами и почти неразрывно призматическим солям. Принадлежность этой группы к Inoceramus неоднократно настораживала внимание палеонтологов, и В. Ф. Пчелищев назвал ее новые виды, неясно, не принадлежит к ней название Mytiloides, так как род этот является меловым. Позже И. Р. Кахадзе также описал дополнительный комплекс Mytiloides из этой же провинции. Несколько видов к этому списку добавил В. И. Зезашин.

Как вытекает из изложенного выше, выделенные из рода Inoceramus таксоны в целом представляют относительно большое количество видов. Основная же масса юрских видов до 1957 г. еще включалась в состав рода Inoceramus. Это касается видов, исключительно юрского или распалощенчатого ворончатого, и в основном очерченных для бореальной области.

З. В. Кошелкин [2, 3] по форме раковины и скульптуры выделила среди них три подрода: Retroceramus, Fractooceramus, Steroceramus, а также род Arcticeramus (неравнобоковатые раковины). В дальнейшем, учитывая особенности лингвального строения, индивидуальных видовых, а также распределения, в соответствии с правилами зоологической номенклатуры, был возведен в ранг рода и назван Retroceramus. Выбранное название публиковалось с 1957 г. в многочисленных отечественных изданиях, посвященных изучению мезозойских и восточных склонов СССР. В частности, ссылки на эту номенклатуру можно найти в работах З. В. Кошелкиной, В. Н. Сакса, В. А. Захранов, З. Д. Москленко, Л. С. Великановой, В. В. Поздняков и других. Это же название значится на корреляционных и стратиграфических схемах, таблицах и в полевых атласах.

Предварительный анализ накопленных сведений по морфологии юрской группы ископаемых из районов и соответствующих областей позволяет уточнить ранее имеющиеся данные и с некоторой степенью осторожности наметить индексирующий систематический состав.

Семейство Inoceramidae Zittel.

Семейство включает род Anoprea Eichw., а также род Arcticeramus Kosch. Их краткие диагнозы даны выше. Замечено что у некоторых групп данного семейства, особенно распределенных в меловых отложениях, связана площадка

УДК 561(116.2)
располагается на призматическом слое, что является важным систематическим признаком.

У представителей других семейств, например, у рода Agulella, значительно развит плеруматовый слой, и святочная площадка неравномерная (см. Holocoelidae). У некоторых из пермских Koluimia призматический слой, подстилающий святочную площадку, очень мощный, многослойный.

Семейство Retroreramiidae Pergament, 1969 *

Типовой вид — Inoceramus retroversus Keyslerling, 1848, стр. 250—251, табл. IV, стр. 4, 5. Северная Сибирь. Батский ярус.

Раковина равномерная, или практически равномерная, вытянутая по оси роста с мацерами приближенными к переднему краю, но не конечным. Скульптура концентрическая, реже — радиальная. Призматический и плеруматовый слой хорошо развиты. Связочная площадка расположена на петрамутровом слое. У взрослых форм она состоит из варьирующих по очертаниям святочных ямок и гребней. Задний мускул — адюктор крупный, передний — сильно редуцирован. Мантлиная линия прямовыводная.

Нижний ярус (?) (?.) Преимущественно в средней юре Бореальной области. Менее многочисленные в верхней юре. Нижний ярус (?).

Типовой вид — Inoceramus retroversus Keyslerling, 1848, стр. 250—251, табл. IV, стр. 4, 5. Северная Сибирь. Батский ярус.

Раковина узкоовальная, значительно вытянутая по оси роста с небольшим крылом, украшенная равномерно расположенной концентрической скульптурой. Связочная площадка относительно широкая, узкая, сужающаяся к крылу, покрыта крупными линейными ямками. Ямки достаточно широкие, узкоовальные, располагаются по бороздам ямок. Нижняя гривная площадка — гладкая, полоса раковины (см. рис., 1). При длине замочного края в 40 мкм имеется 5 святочных ямок, причем отдельные ямки имеют ширину до 5—6 мкм, а гребни — 3—4 мкм.

Сходное строение связочной площадки наблюдается также у видов R. (R.) lenaensis Kosch., R. (R.) greenlandicus (Kosch.), возможно, у R. (R.) proboscis (Kosch.)

Поздреторерамус Koschelkina, subgen. nov.

Типовой вид — Inoceramus kystatysmennis Koschelkina, 1960, стр. 36, табл. VIII, стр. 5. Приверхохийский прогиб (р. Лена, м. Кыстыма). Батский ярус.

Раковина субквадратная с длинным замочным краем и широким крылом. Скульптура обычно из крупных концентрических складок. Связочная площадка длинная, узкая, овальная в сечении, в широких, узкоовальных ямках. Гребни над макушкой уплощены, неясно поперечные, параллельные внутреннему краю, ближе к крышку они становятся закругленными (см. рис., 2). На 50 мкм длина замочного края приходится 6 ямок. Ширина отдельных ямок до 8 мкм при длине 9—10 мкм.

Поздр Меннерерамус Koschelkina, subgen. nov.

Раковина сильно уплощена по оси роста, узкая, с коротким замочным краем и маленьким крылом, либо без него. Наружная поверхность покрыта редкими асимметричными концентрическими складками, либо довольно часыми, но неравномерно расположенными складками, реже — гладкая. Связочная площадка длинная, состоит из двух элементов: гладкой треугольной площадки, расположенной в области крыла, и площадки, покрытой связочными ямками. Связочные ямки широкие, так же как и разделяющие их гребни (см. рис., 3). На 35 мкм длина замочного края приходится 6 ямок и 6 гребней.

Раковина обычно значительно выпукла, вытянутая по оси роста, сужающаяся в области макушки. Замочный край короткий. Крыло широкое, но короткое, чаще гладкое. Поверхность раковины украшена резко асимметричными концентрическими складками, нижние склоны которых нередко короткие, растянутые концентрическими складками. Связочная площадка из многочисленных узких и глубоких связочных ямок, разделенных узкими, высокими гребнями, осложненными бороздками (см. рис., 4). На 25 мкм длина замочного края приходится до 20 ямок и гребней.

К группе юрских форм с определенной тенденцией принадлежностью автор относит род (?) Mitiloceras Roll., поскольку у данного рода не установлено строение замка, структура раковина, а также, теперь, некоторые группы, так называемые (Mytiloides), требующие дополнительного изучения. К сожалению, следует отметить, что у многих изученных автором видов замок оказался недоступным для исследований, поэтому при дальнейших работах сведения по систематике могут быть пополнены.

* М. А. Перегорев назвал семейство, но диагноз не сооблип.
Критерий знаков для выбора среднеарифметических и средневзвешенных оценок параметров подсчета запасов

В. И. Кузьмин
Харьковский институт радиоэлектроники

Средняя мощность рудного тела, среднее содержание компонента и средний объемный вес руды, представляющие параметры подсчета запасов в пределах блока, горизонта, участка или всего рудного тела, могут быть подсчитаны (оценены) по формулам среднеарифметического и средневзвешенного.

На месторождениях, где указанные показатели обладают высокой изменчивостью и хотя бы в малой степени коррелируют между собой (|τₓᵧ| > 0,10—0,20), среднеарифметические и средневзвешенные оценки дают существенно различные значения параметров подсчета запасов. Так, на золоторудных и редкокетальных месторождениях, где коэффициент вариации мощности в среднем равен Vₓ = 0,8 (80%), коэффициент вариации содержания достигает Vₓ = 2,0—3,0 (200—300%) и коэффициент корреляции между этими показателями нередко превышает по абсолютной величине 0,1—0,2, средняя арифметическая и средневзвешенная (на мощность) оценки среднего содержания могут различаться в 1,2—1,5 раза [1]. Поэтому проблема правильного применения формул среднего арифметического и среднего взвешенного на указанных месторождениях имеет большое практическое значение.

Единственно правильный и перспективный путь решения проблемы связан с использованием аппарата теории вероятностей и математической статистики.

Нижее излагается простое правило знаков, с помощью которого можно вполне надежно решать вопрос о целесообразности использования средневзвешенной оценки параметра подсчета запасов в каждом конкретном случае.

С уменьшением объема разведочной выборки вероятность того, что средневзвешенная оценка будет более точным приближением истинного значения параметра по сравнению со средней арифметической оценкой, также уменьшается. Иными словами, эффективность применения средневзвешенных оценок при подсчете запасов уменьшается с уменьшением объема разведочной выборки [2]. При некотором сравнительно небольшом объеме выборки эффективность применения средневзвешенных оценок при подсчете запасов измеряема вероятностью неравенства,

$$ P \left(| X_{av} - X \text{ист} | < | \bar{X} - X \text{ист} | \right) = P_n, \quad (1) $$

где X_{av}, X_{av} — среднеарифметическая и средневзвешенная оценки параметра,

$X \text{ист}$ — истинное значение параметра, будет мало отличаться от 0,5 (50%).

Например, при $P_n = 0,55—0,60$ практически безразлично, какую из двух оценок (X или X_{av}) применять, так как только в 55—60 случаях из 100 средневзвешенные оценки будут точнее среднеарифметических. Вместе с тем отличие P_n от 0,5 может быть следствием случайных причин.

Таким образом, возникает вероятностная задача, которую можно сформулировать так: необходимо оценить с заданной надежностью, является ли отличие P_n от 0,5 существенным или оно носит случайный характер и обусловлено флуктуациями выборочных данных.

Сущность решения задачи с помощью критерия знаков состоит в следующем [3].

Пусть в N блоках (участках и т. д.) вычислены среднеарифметические \bar{X} и средневзвешенные X_{av} оценки параметра (среднего содержания, средней мощности, среднего объемного веса) составляют разности $r_i = X_i - X_{av}$ (i = 1,2...N), которые могут иметь знак плюс или минус.

Разности, равные нулю, исключают из рассмотрения. Нулевая гипотеза будет состоять в том, что положительные и отрицательные разности распределены симметрично около нуля, причем вероятность появлений каждой из них будет равна

$$ P(+) = P(-) = 0,5. $$

Конкурирующая гипотеза будет заключаться в том, что $P(+)$ и $P(-)$ имеют существенное отличие от 0,5.

Пусть число знаков плюс в последовательности разностей равно $K_N(+)$, тогда число знаков минус будет $N - K_N(+) = K_N(-)$. Проверка нулевой гипо-