Distribution and General Features

Faunas of Jurassic age are present in arctic and western Canada, which regions represent two distinctive zoogeographical provinces (Table XI-7). The arctic area includes the northern part of the Canadian arctic islands, northwestern parts of the Northwest Territories, and northern and central Yukon. The western area includes the subsurface of the southern part of the Prairie Provinces, Manitoba, Saskatchewan, and eastern Alberta, the Rocky Mountains and Foothills, various parts of central and western British Columbia, including Vancouver Island and the Queen Charlotte Islands.

The subdivision of the Jurassic into zones and stages is based on ammonites, and in the Upper Jurassic also on representatives of the pelecypod genus Buchia. The ammonites also establish the zoogeographical provinces. Of other invertebrates belemnites, pelecypods, gastropods, corals, a few brachiopods, echinoderms, arthropods, and microfaunas occur. There are a few marine vertebrate remains. Of the invertebrate macrofossils, pelecypods and gastropods have also provided valuable guide fossils. Microfaunas have particular importance in the subsurface where macrofossils are rarely available.

A great number of faunal gaps, often coincidental with absence of sediments, are characteristic of the Jurassic in Canada. This is evident when comparing the Jurassic faunas of western Canada with those of northwestern Europe or other parts of the world. A considerable number of the ammonites characteristic of certain zones are missing, sometimes amounting to the greater part of a stage.

Zoogeography

Lower Jurassic ammonite faunas in Canada do not show any zoogeographical differences. Their character is not basically different from that of those of other parts of the world, and most show close affinities, even at the specific level, to the Lower Jurassic ammonites of northwestern Europe. As far as the Hettangian ammonites of British Columbia are concerned, similarities to the northeastern Alps exist mainly on generic level. Thus, the well-known cosmopolitan character of the Lower Jurassic ammonite faunas is also clearly evident in both western and arctic Canada. Lower Jurassic pelecypods seem to be evenly distributed in these areas, and even show a considerable independence of facies. Corals are, however, restricted to southwestern British Columbia, where they are found in rocks closely associated with volcanic and greywacke sequences.

The same zoogeographical conditions exist in the lower Bajocian, earliest Middle Jurassic. In the middle Bajocian, the Bathonian, lower and middle Callovian — that is throughout most of the Middle Jurassic, as the presence of upper Callovian is not recognized in Canada — clear zoogeographical differences in the ammonite faunas are apparent, particularly between arctic and western Canada. The arctic province is characterized, in ascending order, by the genera Arkellocceras (probably middle Bajocian), Cranocephalites (upper Bajocian and lower Bathonian), Arcocephalites (mainly middle Bathonian), Arctoceras (upper Bathonian), and various arctic species of the genus Cadoceras (upper Bathonian and lower Callovian). With few exceptions these faunas are more or less completely represented in East Greenland, Spitsbergen, Frans Josef Land, Novaya Zemlya, and northern Siberia but are still unknown in western Canada. In the western province, the middle Bajocian is characterized uniformly by such genera as Stephanoceras, Stemmatoceras, Teloceras, Chondroceras, and others, which are all absent in the arctic province. No typical arctic Bathonian ammonites were found in the western province. The lower Callovian ammonite genera of western Canada as Paracephalites, Warrenooceras, Paracadoceras, Lilloetta, Imlayoceras, and Kepplerites are absent in arctic Canada, but also within the western province some differences in the lower Callovian ammonite fauna seem to exist. The genera Paracephalites, Warrenooceras, and Imlayoceras of the Fernie Group of the Rocky Mountains and Foothills have hitherto not been found in any area of British Columbia whereas Lilloetta and Paracadoceras found in British Columbia do not appear in the Fernie Group. On the other hand, close faunal and stratigraphic relationships exist between the Callovian ammonite faunas of the Fernie Group and those of the United States western Interior. A fairly rich Cadoceras fauna different from that of other parts of western Canada and arctic Canada is present on Vancouver Island.

Beginning with the lower Oxfordian of the Upper Jurassic, the differences between the arctic and western faunal provinces of Canada are no longer recognizable, at least on the basis of present knowledge. The ammonite genera Cardioceras and Amoeboceras of the lower and upper Oxfordian and lower Kimmemidgian respectively are uniformly distributed in both arctic and western Canada and the same applies to the upper Oxfordian—lower Kimmernidgian pelecypod guide species Buchia concentrica. Also in younger Upper Jurassic beds the various Buchia species appear widely distributed in both northern and western Canada. However, as ammonites of these beds are extremely rare, it cannot yet be stated with confidence that no different faunal provinces existed in Canada during the late Upper Jurassic.

With the exception of the corals that seem to be restricted to regions of British Columbia, no other groups
TABLE XI-7

Distribution and succession of Jurassic guide fossils

<table>
<thead>
<tr>
<th>EPOCH</th>
<th>ARCTIC ISLANDS</th>
<th>RICHARDSON AND BRITISH MOUNTAINS</th>
<th>CENTRAL YUKON TERRITORY</th>
<th>SOUTHERN YUKON TERRITORY</th>
<th>QUEEN CHARLOTTE ISLANDS</th>
<th>VANCOUVER ISLAND</th>
<th>WESTERN AND INTERIOR PARTS OF BRITISH COLUMBIA</th>
<th>ROCKY MOUNTAINS</th>
<th>SOUTHERN Plains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purbeckian s. st. (Aquilonian, upper Volgian)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bucha fischeriana</td>
<td>Bucha fischeriana</td>
<td>Not known</td>
<td>Absent</td>
<td>Absent</td>
<td></td>
<td>Not known</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bucha stenoderma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bucha pochii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portlandian or lower Volgian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bucha mosquensis</td>
<td>Bucha mosquensis</td>
<td>Bucha mosquensis</td>
<td>Not known</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Kimmeridgian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoeboceras sp.</td>
<td>Bucha concenmca</td>
<td>Bucha concenmca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bucha concenmca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bucha concenmca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Kimmeridgian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoeboceras sp.</td>
<td>Bucha concenmca</td>
<td>Bucha concenmca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bucha concenmca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bucha concenmca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Callovian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Callovian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cephaloceras ?</td>
<td>Cephaloceras ?</td>
<td>Cephaloceras ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lower Callovian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cephaloceras ?</td>
<td>Cephaloceras ?</td>
<td>Cephaloceras ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bathonian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cephaloceras ?</td>
<td>Cephaloceras ?</td>
<td>Cephaloceras ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Upper Bajocian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Known</td>
<td>Cranoceras borealis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Bajocian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoeboceras sp.</td>
<td>Amoeboceras ?</td>
<td>Inoceramus ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bajocian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lenticularia ?</td>
<td>Inoceramus ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Toarcian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diacycleroceras communis</td>
<td>Harpoceras ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pliensbachian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Known</td>
<td>Amathus ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinemurian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Echoceras ?</td>
<td>Echoceras ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hettangian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Known</td>
<td>Not Known</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GSC

MARINE JURASSIC FAUNAS
see to be dependent on facies. This may be due partly to the fact that such groups have not yet been studied to the same extent as the ammonites.

Succession of Faunas

The succession of ammonites and buchias is shown in Table XI-7; the latter is based on studies mainly by J. A. Jeletzky. The succession of ammonites in the Lower Jurassic and the lower Bajocian established in various areas of Canada is in agreement with standard sequences in northwestern Europe, and the Hettangian is similar to a certain degree to that of the northeastern Alps. Wherever in Canada a more continuing section could be studied it follows the European pattern and that of other parts of the world, and accordingly the same succession of ammonite zones as in Europe can be applied to the Lower Jurassic of Canada. However, the local or regional incompleteness of the Canadian Lower Jurassic zonal sequence has to be emphasized. The absence of the Hettangian faunas so richly represented in parts of British Columbia in other areas of western and northern Canada is caused by non-deposition of beds of this age. Lower and upper Pliensbachian have now been found in western Canada and are considered to be primarily absent in other areas.

The succession of ammonite faunas and ammonite zones of the Canadian arctic in the upper Bajocian, Bathonian, and Callovian (Table XI-7) is almost the same as the succession in East Greenland established by Callomon (1959). In the middle Bajocian of western Canada, ammonite faunas follow again the northwest European pattern whereas the succession of ammonite faunas in the uppermost Bathonian and the lower Callovian of the Fernie Group in the Rocky Mountains and Foothills is almost completely the same as in the western Interior of the United States. The absence of upper Callovian ammonites in western Canada and the western Interior indicates a considerable gap in the sequence. In the Oxfordian and lower Kimmeridgian, the succession of ammonite fauna is the same as known from other parts of the world, but in the younger Upper Jurassic stages, ammonites are very rare and, if present, poorly preserved. Consequently, the subdivision of the beds concerned is based mainly on various Buchia species that show a zonal arrangement similar to that of other regions.

Selected References

Comprehensive lists of references, including publications by S. S. Buckman, C. H. Crickmay, H. Frebold, F. H. McLearn, P. S. Warren, and J. F. Whiteaves are given in:

Frebold, Hans

Frebold, H., and Tipper, H. W.

Other publications are:

Callomon, J. H.
1959: The ammonite zones of the Middle Jurassic beds of East Greenland; Geol. Mag., vol. 96, No. 6.

Copeland, M. J.

Jeletzky, J. A.

1965: Late Upper Jurassic and early Lower Cretaceous fossil zones of the Canadian Western Cordillera, British Columbia; Geol. Surv. Can., Bull. 103.

PLATE XIX. Lower Jurassic Ammonites

Figure 1 Eolytoceras tasekoi Frebold. Hettangian; Taseko Lakes, British Columbia; 20059.

Figure 2 Psiloceras ex aff. planorbis (Sowerby). Hettangian; Taseko Lakes, British Columbia; 20053.

Figures 3a, b Psiloceras canadense Frebold. Hettangian; Taseko Lakes, British Columbia; 62504.

Figure 4 Discamphiceras? tipperi Frebold. Hettangian; Taseko Lakes, British Columbia; 19926.

Figure 5 Psiloceras (Curviceras) columna brit. Frebold. Hettangian; Taseko Lakes, British Columbia; 1921.

Figure 6 Psiloceras (Curviceras) columna Frebold. Hettangian; Taseko Lakes, British Columbia; 20056.

Figure 7 Charmasseiceras marmoreum (Oppel). Hettangian; Taseko Lakes, British Columbia; 20052.

(Plates XIX–XXII—all figures natural size)
Figure 17 *Catacoeloceras spinatum* (Frebold). Wilkie Point Formation, Toarcian; Prince Patrick Island; 13361.

Figure 18 *Dactylioceras commune* (Sowerby). Wilkie Point Formation, Toarcian; Prince Patrick Island; 13355.

Plate XX. Middle Jurassic Ammonites and Pelecypods

Figure 1 *Stephanoceras yakourense* McLearn. Yakoun Formation, middle Bajocian; Queen Charlotte Islands; 9057.

Figure 2 *Normannites canadensis* McLearn. Yakoun Formation, middle Bajocian; Queen Charlotte Islands; 9019.

Figure 3 *Zemistephanus junteri* McLearn. Yakoun Formation, middle Bajocian; Queen Charlotte Islands; 9007.

Figure 4 *Chondroceras allani* (McLearn). Middle Bajocian; Tulsequah, British Columbia; 16024.

Figure 5 *Warrenoceras riedianum* (Imlay). Fernie Group, lower Callovian; Alberta; 14709.

Figure 6 *Kosmoceras (Gulielmiceras) knechti* Imlay. Lower Callovian; Esterhazy Shaft, Saskatchewan; 14696.

Figure 7 *Toricellites? spinosum* Frebold. Fernie Group, lower Callovian; Alberta; 14710.

Plate XXI. Middle Jurassic Ammonites and Pelecypods

Figure 1 *Pseudolioceras mclintocki* (Haughton). Wilkie Point Formation, lower Callovian; Mackenzie King Island; 14658.

Figure 2 *Leioceras opalium* (Reinecke). Wilkie Point Formation, lower Bajocian; Prince Patrick Island; 13379.

Figure 3 *Oxytoma jacksoni* (Pompeckj). Wilkie Point Formation, lower Bajocian; Prince Patrick Island; 13390.

Figure 4a-c *Arkelloceras tozeri* Frebold. Wilkie Point Formation, probably middle Bajocian; Prince Patrick Island; 13404.

Figure 5 *Cranoccephalites borealis* (Spath). Bug Creek Formation, upper Bajocian; Aklavik Range, N.W.T.; 15103.

Figure 6 *Cranoccephalites vulgaris* Spath. Wilkie Point Formation, lower Bajocian; Prince Patrick Island; 13398.

Figure 7 *Arctocephalites elegans* Spath. Bathanian; Franklin Mountains, N.W.T.; 15108.

Figure 8 *Arcticoceras koehi* Spath. Bathanian; Porcupine River, Yukon; 13117.

Figure 9 *Arcticoceras ishmae* (Keyserling). Wilkie Point Formation, Bathanian; Prince Patrick Island; 15120.

Figure 10 *Cadoceras septentrionale* Frebold. Savik Formation, Callovian; Axel Heiberg Island; 17657.

Figure 11 *Cadoceras cf. falsum* Vorontov. Savik Formation, Callovian; Axel Heiberg Island; 17659.

Figure 12 *Cadoceras canadense* Frebold. Callovian; Aklavik Range, N.W.T.; 17664.

Plate XXII. Upper and Middle Jurassic Ammonites and Pelecypods

Figure 1 *Titanites occidentalis* Frebold. Lower Kootenay Sandstone, Portlandian; Fernie, British Columbia.

Figure 2 *Buchia cf. blanfordiana* (Stoliczka). Uppermost Portlandian?; Vancouver Island; 16584.

Figure 3a, b *Buchia fischeri* (d’Orbigny). Aquilonian; Aklavik Range, N.W.T.; 17991.

Figure 4 *Buchia pischi* (Gabb) var. mniovinikensis (Pavlov). Mould Bay Formation, upper Portlandian; Prince Patrick Island; 17120.

Figure 5 *Buchia mosquensis* (von Buch) sensu lato. Middle Kimmeridgian to lower Portlandian; Dave Lord Ridge, Yukon; 17990.

Figure 6 *Buchia mosquensis* (von Buch) sensu lato. Middle Kimmeridgian to lower Portlandian; Richardson Mountains, Yukon; 17989.

Figure 7a, b *Buchia concentrica* (Sowerby) var. erringtoni (Gabb). Tyaughton Lake, British Columbia; 17012.

Figure 8 *Pleuromya postculminata* McLearn. Fernie Group, upper Bajocian or lower Callovian; Alberta; 6089.

Figure 9 *Oxytoma blairmorensis* McLearn. Fernie Group, lower Callovian; Alberta; 6050.

Figure 10 *Sonninia gracilis* (Whiteaves). Fernie Group, middle Bajocian; Alberta; 4809.

Figure 11 *Inoceramus lucifer* Eichwald. Wilkie Point Formation, probably middle Bajocian; Prince Patrick Island; 13417.

Figure 12 *Cardioceras canadense* Whiteaves. Fernie Group, Oxfordian; British Columbia; 7437.

Figure 13 *Cardioceras (Scarburgiceras) alphacordatum* Spath. Fernie Group, Oxfordian; Alberta; 13892.

Figure 14 *Amoeboceras* sp. indet. Mould Bay Formation; upper Oxfordian or lower Kimmeridgian; Mackenzie King Island; 15131.
CONTENTS

CH. I INTRODUCTION

CH. II PHYSIOGRAPHIC SUBDIVISIONS OF CANADA
 by H. S. Bostock, 9.

CH. III THE CANADIAN MINERAL INDUSTRY

CH. IV GEOLOGY OF THE CANADIAN SHIELD
 by C. H. Stockwell, J. C. McGlynn, R. F. Emslie, B. V. Sanford,

CH. V ECONOMIC MINERALS OF THE CANADIAN SHIELD
 by A. H. Lang, A. M. Goodwin, R. Mulligan, D. R. E. Whitmore,
 G. A. Gross, R. W. Boyle, A. G. Johnston, J. A. Chamberlain, and
 E. R. Rose, 151.

CH. VI GEOLOGY OF SOUTHEASTERN CANADA
 by W. H. Poole, B. V. Sanford, H. Williams, and D. G. Kelley, 227.

CH. VII ECONOMIC MINERALS OF SOUTHEASTERN CANADA
 by E. R. Rose, B. V. Sanford, and P. A. Hacquebard, 305.

CH. VIII GEOLOGY OF WESTERN CANADA
 by R. J. W. Douglas, H. Gabrielse, J. O. Wheeler, D. F. Stott, and
 H. R. Belyea, 365.

CH. IX ECONOMIC MINERALS OF WESTERN CANADA
 by H. W. Little, H. R. Belyea, D. F. Stott, B. A. Latour, and

CH. X GEOLOGY OF THE ARCTIC ARCHIPELAGO
 by R. Thorsteinsson and E. T. Tozer, 547.

CH. XI BIOCHRONOLOGY: STANDARD OF PHANEROZOIC TIME
 by E. W. Bomber, T. E. Bolton, M. J. Copeland, L. M. Cumming,
 H. Frebold, W. H. Fritz, J. A. Jeletzky, D. C. McGregor, D. J. McLaren,
 B. S. Norford, A. W. Norris, G. W. Sinclair, E. T. Tozer, and
 F. J. E. Wagner, 591.

CH. XII QUATERNARY GEOLOGY
 by V. K. Prest, 675.

CH. XIII GROUNDWATER GEOLOGY
 by I. C. Brown, 765.

PHOTO CREDITS, 792.

GUIDE TO ILLUSTRATIONS, 793.

INDEX, 801.