LE CRÉTACÉ INFÉRIEUR ET LE JURASSIQUE TERMINAL
DE L'EXTRÈME-SUD TUNISIEN

GEORGES BUSSON et CARLA ALBANESI

Riassunto. Nella prima parte del lavoro vengono riportati i risultati dello studio stratigrafico effettuato sulla serie arenacea cretacea dell'Estremo-Sud tunisino. Essa inizia con gli ultimi banchi marini oxfordiani, cui seguono dolomie cristalline pure o argillose e banchi di arenarie e termina con le argille verdi barremiane, sormontate a loro volta da carbonati della serie apto-cenomaniana. L'età della serie è compresa tra il Giurassico superiore o terminale ed il Cretaceo inferiore. Vengono descritte le varie sezioni della serie, a cominciare da quella di Merbah el Asfer, considerata sezione-tipo.

Le specie identificate hanno permesso l'attribuzione dei livelli fossiliferi al Cretaceo inferiore.

Abstract. The first part of the work is concerned with the results of the stratigraphic study carried out on the Cretaceous arenaceous series of the Extrême-Sud tunisien. Its lowermost part consists of the youngest Oxfordian marine thick beds, overlain by pure or argillaceous crystalline dolomites, in turn overlain by thick beds of sandstone. The top of the series consists of Barremian green claystones, overlain by carbonates of the Aptian-Cenomanian series. The age of the series is included between the Uppermost Jurassic and the Lowermost Cretaceous. The various sections of the series are described, to start with that of Merbah el Asfer, which is considered as the type-section.

The palaeontological part is concerned with the illustration of the Pelecypod and Gastropod fauna yielded by the series under examination. 13 species have been identified, belonging to the following genera: Nucula, Nuculoma, Trigonarca, Lithophaga, Trigonia, Astarte, Freiastarte, Cyprina, Panope, Liopistha, Harpagodes. Two species are new: Trigonarca bussoni, Liopistha (Psilomya) bussoni.

According to the species identified, the fossiliferous levels have been ascribed to the Lower Cretaceous.

1) ETUDE STRATIGRAPHIQUE (G. BUSSON)

Historique.

A. Joly (1909) est un des premiers auteurs à avoir signalé les grès crétacés de l'Extrême-Sud tunisien et à en avoir donné une description sommaire. L. Pervinquiére, quelques années plus tard (1912) décrit avec
plus de détail ces formations, en particulier à Baten el Ghezel, El Hachem, Gour el Mezoued, Hachem gour Rached, à El Draa, dans l'Oued Segdel et dans l'Oued Morteba (au-dessus de Dehibat). Sa description lithologique où toutes les épaississeurs sont chiffrées, est d'une grande précision. Par ailleurs, cet auteur cite de nombreux restes de Vertébrés et signale l'abondance des fragments de bois.

Sur la carte géologique au 1/200.000e Medenine, publiée en 1933 par M. Solignac et E. Berkaloff, la série gréseuse superposée aux calcaires jurassiques est attribuée pour la plus grande partie au Néocomien s.l. Quant à la partie sommitale, immédiatement subordonnée aux calcaires crétacés, elle est cartographiée en Albien. Par la suite, A. Robaux et G. Choubert (1941) cartographient une grande partie du Sud-tunisien. Ces auteurs saisissent l'importance du conglomerat à dragées qui s'intercale dans cette série gréseuse et ils en font une limite stratigraphique: au-dessous, c'est le Crétacé inférieur; quant au conglomerat et à la série gréseuse sus-jacente, c'est le Crétacé moyen. A.F. de Lapparent, publiant en 1951, un premier compte-rendu de ses recherches sur les faunes de Vertébrés du Crétacé continental, souligne l'homogénéité de cette faune de bas en haut de la série gréseuse. Récemment, P.F. Burollet et G. Manderscheid (1965) précisèrent que, dans la coupe de Rhoumrassène, sous les calcaires et argiles de l'Albien et l'Aptien, une alternance de sables, d'argiles sableuses et gypseuses et de dolomie représente la «formation Asfer = Wealdien (épaisseur 100 à 300 m environ)». Par ailleurs, P.F. Barnaba (1966) a publié une étude stratigraphique sur le Crétacé de la Tunisie méridionale. Les terrains compris entre les calcaires jurassiques et les calcaires cénomaniens sont appelés «formation Asfer (Wealdien)». Quelques mesures d'épaisseur sont précisées. La formation serait essentiellement continentale avec quelques fugaces influences marines. Du point de vue âge, cet auteur attribue l'Asfer au Crétacé inférieur et il estime que dans la région de Foum Tatahouine-Remada, cette unité pourrait comprendre une partie du Cénomanien. Enfin, j'ai publié une note sur l'existence d'organismes (Foraminifères et Algues) découverts au Tebaga de Medenine, à la base de la série carbonatée. Ces organismes déterminés par Ph. Dufaure et G. Foury nous permettaient de dater de l'Aptien supérieur ce niveau très généralement attribué au Cénomanien (G. Busson, Ph. Dufaure & G. Foury, 1966): la série gréseuse sous-jacente aux carbonates ne peut donc avoir un âge plus récent que l'Aptien inférieur ou le Barrémien.
Limites de la série.

L'ensemble dont il va être question ci-dessous ne représente que la partie inférieure de ces grès crétacés, partie dont nous allons examiner tout d'abord les limites. La base de cette série a été placée au toit des derniers bancs de calcaires marins, à Foraminifères, Algues et débris d'Echinodermes de la série attribuée à l'Oxfordien (G. Busson, 1967). Au-dessus, la sédimentation carbonatée se poursuit pendant une quarantaine de mètres, mais avec des caractères bien différents, dolomie cristalline pure ou argileuse. En outre, des bancs de grès ne tardent pas à apparaître, alors qu'ils manquaient dans la série oxfordienne. L'apparition de ces grès assure un passage graduel et progressif à la série « purbecko-wealdienne » typique. La limite choisie, si elle ne correspond pas à un changement d'âge prouvé par des faunes, se marque néanmoins par une modification importante des conditions sédimentaires: elle est donc l'indice d'un changement paléogéographique relativement important. Enfin, ainsi définie, la limite inférieure se suit sur plus de 40 kilomètres depuis la latitude du Djebel Charenn jusqu'à celle de Ksar Krerachef, grâce à la présence constante, dessous, des calcaires oxfordiens en petits bancs (le Portlandien des auteurs), dessus, des dolomies cristallines.

La limite supérieure n'est pas définie, elle non plus, par un renouvellement de faunes; mais elle s'impose absolument lors d'une étude cartographique et stratigraphique. En effet, une coupure fondamentale peut être opérée au sein de ces grès crétacés. Depuis Bateun el Rhezel, 30 à 35 km au SSE de Foum-Tatahouine, jusque un peu au delà de Nalut en Tripolitaine, on note à leur partie moyenne une séquence constituée d'une cinquantaine de mètres d'argiles vertes, surmontées d'un conglomérat important, très grossier, remarquable par son rôle dans le relief. Or, l'ensemble inférieur, jusqu'aux argiles vertes et y compris celles-ci, évolue de manière parfaitement indépendante de la partie supérieure, comprenant le conglomérat et les grès « barrémiens » qui lui sont superposés. En particulier, entre El Guetar et Bateun el Rhezel, on voit l'ensemble supérieur s'amincir très rapidement et se biseauter en totalité; l'ensemble inférieur, au contraire, n'est nullement modifié et les argiles vertes qui le couvrent passent, au delà du point de biseautage, au contact des carbonates sus-jacents. Au delà, vers le Nord, les argiles vertes restent surmontées par des carbonates (plus ou moins gréseux ou même microconglomératiques) de la série apto-cénomanienne. Il est important de noter que ni le dépôt des conglomérats « barrémiens », ni l'étallement de la transgression apto-cénomanienne, n'ont le moins du monde érodé ces argiles vertes.
Fig. 1 - Carte des affleurements du Crétacé inférieur-Jurassique terminal de l'Extrême-Sud tunisien (en grisé). Le figuré de calcaire correspond au toit des calcaires callovo-oxfordiens.
Dans ces conditions, l'unité comprise entre les calcaires oxfordiens, à la base et le toit des argiles vertes, au sommet, correspond à un ensemble stratigraphique bien individualisé. Du point de vue âge, je préciserai que, d'une part, l'attribution des ensembles encaissants, respectivement à l'Oxfordien et au Barrémien (cette dernière attribution d'ailleurs incertaine); d'autre part, la continuité de sédimentation, dans la partie méridionale du moins, entre ces différents terrains, amènent à supposer un âge jurassique supérieur ou terminal et Crétacé inférieur pour la série considérée. Étant donné le faciès continental d'une partie au moins de cette série, il m'est arrivé de parler à son propos de « Purbecko-Wealdien ». Or, dans la mesure où cette série risque de comprendre du Kimmeridgien, cette dénomination n'est pas conforme à la définition du Purbeckien de Purbeck. En fait, il s'agit là plus d'analogie de faciès que d'étages; et étant donné la présence d'une série compréhensive englobant du Crétacé inférieur et du Jurassique terminal, et la succession d'une unité principalement carbonatée, puis d'une unité argilo-gréseuse, il m'a paru commode d'utiliser ce nom, « assez pratique car, sans prétendre à trop de précision, il évoque à la fois un certain style de faciès et une position stratigraphique approximative » (P. Rat, 1963).

Répartition des affleurements.

La carte schématique ci-jointe montre clairement les grands traits de la répartition de cette unité. Du Nord vers le Sud, ce « Purbecko-Wealdien » apparaît à la latitude de B[1]. Kreddache et s'épaissit jusque vers le Djebel Haddada. Sur une douzaine de kilomètres s'étend alors la région où les épaisseurs sont les plus fortes et en même temps où les affleurements de cette unité sont les plus nombreux et les plus continus, spécialement dans le Djebel Merbah el Asfer. Plus au Sud encore, les épaisseurs restent élevées, mais les affleurements se cantonnent au pied de la falaise crétacée, la plus grande partie de la série se dissimulant sous les atténuements de la grande plaine qui séparent les corniches jurassiques et crétacées: plus une seule coupe continue ne peut être observée jusqu'à Dehibat, à la frontière tripolitaine.

La coupe-type de Merbah el Asfer (1).

Cette coupe a été levée sur 6 km de long. Elle débute à la sortie des

(1) Certaines descriptions de coupes données ici sont identiques à celles publiées simultanément dans un travail d'ensemble sur l'Extrême-Sud tunisien (G. Busson, à paraître 1967): ces descriptions se prêtent peu à des variations et s'expriment difficilement de plusieurs manières différentes.
Fig. 2 - Colonnes lithologiques correspondant aux principales coupes décrites dans le texte, entre les calcaires oxfordiens à la base et, au sommet, les dolomies de l'Apto-Cénomanien au Nord, les grès barrémiens au Sud. Les numéros des gisements ayant livré des Lamellibranches sont localisés le long de ces colonnes lithologiques. On note, par ailleurs, du Nord vers le Sud, l'enrichissement relatif en carbonates.
gorges par lesquelles l’Oued Temtaïet franchit les calcaires oxfordiens, à 5 km à l’Ouest de Foum-Tatahouine. Et elle aboutit, après avoir traversé tous les reliefs du Djebel Merbah el Asfer, quelques dizaines de mètres au-dessous de la corniche sommitale du Dj. Bou Louha. La description est donnée de bas en haut:

1) calcaires fossilières et dolomies cristallines terminant la série oxfordienne à intercalation marine;

3) après une lacune d’une dizaine de mètres, on note en alternance des dolomies jaunes, ocres, brunes ou rouges, soit en dalles dures, soit en bancs grumeleux et tendres, à cassure fine ou plus souvent pétries de très petits débris de coquilles; des sables argileux, sauf quelques bancs de grès carbonatés et même parfois ferrugineux et, vers le sommet, un gros banc de grès blanc; des argiles vertes ou grises, rarement pures, en général gypseuses ou argileuses. Cette série épaissit de 32 mètres, forme une petite cuesta, 3 kilomètres environ à l’Ouest de la sortie des gorges de Temtaïet;

4) argiles gypseuses et sableuses à lits décimétriques, de dolomie rognonneuse jaunâtre. Les bancs de grès — ou de sable franc — et les argiles vertes apparaissent surtout à la partie supérieure de l’intervalle. Une dalle massive de dolomie ocre couronne cet intervalle et forme un replat de grande extension. La partie moyenne est riche en débris de bois siliciés. Épaisseur: 19 m;

5) au-dessus de ce replat, on note 2 m de dolomie ocre, jaunâtre, grumeleuse; 5 m de sable blanc assez pur, puis de sable argileux au toit duquel une intercalation de dolomie jaune-ocre m’a fourni: Lithophaga oblonga (d’Orbigny). Sur 7 m, alternent ensuite des argiles verdâtres gypseuses, des grès en plaquettes mauves et quelques intercalations de dolomie jaune-ocre, à débris de Mollusques. Les alternances d’argiles et de grès en plaquettes contiennent de véritables troncs en place. Enfin, 10 m d’argiles terminent cet intervalle: la moitié inférieure est verte, puis brune et enfin la moitié supérieure est constituée d’argiles rouges, lesquelles sont relativement rares dans le Purbecko-Wealdien. Au total: 24 m;

6) grès sablex, puis argiles vertes: 11 m;

7) dolomies soit en bancs durs, bien lités, et alors de couleur rouge, soit en intercalations tendres, grumeleuses, rognonneuses et alors jaunâtres. A leur partie moyenne, ces dolomies admettent une intercalation de 2,50 m de grès friable, blancâtre, comportant des lits argileux et des lits gypseux centimétriques. Ces dolomies ont une cassure beige, finement cristalline. Le banc de la base de l’ensemble détermine un plateau d’une certaine importance. Épaisseur totale: 11 m;

8) argiles vertes gypseuses et sableuses avec trois intercalations de dolomie très finement cristalline, parfois légèrement et finement gréseuse. Au milieu, une passée de 2 m 50 de sable blanc. Épaisseur: 14 m;

9) au-dessus d’une lacune de visibilité de 2 m 50, apparaissent des dolomies rognonneuses, jaune-ocre, un peu gréseuses et micacées, plus des dolomies cristallines en bancs bien lités, très durs. Épaisseur: 7 m;

10) sable, puis argile gypseuse et sableuse, à débris de bois silicié abondant et lit de dolomie ocre. Au toit, une dalle très dure et très massive (0,60 m) forme un replat très important; c’est une dolomie rousse, à cassure cristalline gris beige. Épaisseur totale: 5 m;

11) au-dessus de ce replat: argiles vertes gypseuses et sableuses sur 2,50 m; puis, sur 2 m, dolomies en dalles décimétriques jaunâtres, à cassure beige sombre, à pâte fine, avec Lamellibranches nombreux; sable argileux gris clair à bois très abondants. (2 m); argiles gris-vert à filonnets de gypse avec, vers le haut, une intercalation de
Fig. 3 - Dessin des formations wealdiennes de la région du Djebel Haddada, montrant un exemple de passage de faciès et de formations lenticulaires. La crête située sur la gauche est couronnée par un banc épais et massif (1 m) de calcaires gréseux. Immédiatement à droite, ce banc a disparu; la coupe n'est plus constituée que d'argiles, de sables et de minces lits dolomitiques.
2 m de sable fin, blanc, très riche en bois hématisés et gypseux. Epaisseur totale: 16 m;
12) alternance de sables argileux, de sables blancs purs, de grès gypseux et de quelques bancs de grès carbonatés à kerboub (1). Certains bancs de grès presentent de belles stratifications obliques. Dans le tiers inférieur, on trouve du bois gypseux au sein d'une intercalation d'argile verdâtre à lits sableux; un peu plus bas que cette intercalation, j'ai ramassé une dent de Reptile, également en gypse et des débris osseux. Dans toute cette série s'intercalent encore de nombreux bancs de dolomie ocre, à cassure finement cristalline, dont l'épaisseur va de quelques centimètres à 60 cm; à la partie moyenne, deux de ces bancs, particulièremment épais, m'ont livré: Nuculoma planata (Deshayes), Astarte sinuata d'Orbigny et Freiastarte subcostata (d'Orbigny). Epaisseur totale: 32 m;
13) argile verte sableuse, avec 3 bancs de dolomie très finement cristalline. L'un, très massif (0,70 m) à moules de Lamellibranches, est situé à la partie moyenne; au-dessus de ce banc, les argiles sableuses contiennent beaucoup de bois hématisés et gypseux et j'y ai trouvé également une dent palatine. Epaisseur totale: 19 m;
14) les premiers 2,50 m consistent en grès blanchâtres, tendres, très calcaires, dont la partie inférieure est riche en débris: bois hématisés, fragments de plaques de Tortues, dents de Crocodiliens, piquants de Poissons (Hybodus ?), dents palatines de Lepidoto, etc.; argile sableuse grise (6 m); puis sur 10 m, seuls, 3 bancs de dolomie émergent des éboulis qui recouvrent vraisemblablement des argiles ou argiles sableuses. Le banc dolomitique médian m'a livré: Nucula (Pectinucula) jaccardi Pictet & Campiche; au total 19 m;
15) grès tendres, blancs, avec quelques intercalations argileuses, puis dolomie blanc jaunatre, sans stratification nette: 4 m;
16) argile verte et plus rarement rouge avec lits dolomitiques décimétriques, bien réglés, de couleur jaune ocre. Ces argiles ne sont bien visibles que sur une dizaine de mètres; mais elles occupent au total 35 m, jusqu'au banc conglomératique de la base de la série carbonatée;
17) conglomérat polygénique, très grossier, épais de 2 à 5 m. Vers le haut, le ciment carbonaté devient de plus en plus abondant. Au-dessus, débutent les dolomies de la série apto-cénomanienne.

Description des autres coupes et évolution géographique de la série.

Vers le Nord

COUPE DU DJEBEL HADDADA. Situé 8 à 10 km au Nord-Ouest du Djebel Merbah el Asfer, le flanc nord du Djebel Haddada, jusqu'à la route de Guermessa, offre une coupe merveilleusement bien exposée. Certains passages de faciès y sont particulièrement spectaculaires. L'analyse des successions et des intrusions lithologiques peut y être poussée. Les niveaux à bois, enfin, y sont d'une grande abondance et d'une grande richesse: l'un des échantillons que j'en ai ramené a été déterminé comme Brachyoxylon brachyphylloides Krausel, espèce déjà décrite du Jurassique moyen de Ksour Djelidatt. La présence ici encore de cette espèce souligne l'extrême homogénéité et la monotonie de cette flore: du Bathonien

(1) On désigne sous ce nom, dans les régions sahariennes, les grès se présentant comme une agglomération de concrétions plus ou moins sphériques, dont le diamètre peut aller de quelques millimètres à quelques centimètres. Ce concrétionnement est lié à l'existence d'un ciment carbonaté cristallisé, et chaque concrétion correspond à un cristal unique.
au Crétacé inférieur, on retrouve les mêmes structures de *Paradoxopteris stromeri* Hirmer, les mêmes plans ligneux de *B. brachyphylloides* Krausel.

D'autre part, ce sont ces couches, ou des couches toutes voisines, qui ont fourni à R. Furon un fragment de bois homoxylé de type araucarien, à partir duquel M. Veillet-Bartoszewsk a (1955, pp. 605-612) a créé l'espèce *Dadoxylon* (Araucarioxylon) *furonii*.

LATITUDE DE RHOUMRASSÈNE. Le Crétacé inférieur m'a livré ici deux espèces de Lamellibranches: *Lithophaga oblonga* (d’Orbigny) et *Nuculoma planata* (Deshayes), dont les gisements (nos 2.331 et 2.332) sont situés sur la Fig. 2 ci-jointe.

BIR MITEUR. Les environs de Bir Miteur offrent des coupes très belles et très continues depuis les calcaires marins jurassiques jusqu’aux dolomies du Crétacé moyen.

1) Calcaires très massifs, beiges, à patine brune, à stratifications obliques fréquentes, hérissés de Stromatopores siliciéfiés;
2) alternance de calcaires durs, en bancs de 0,10 à 0,60 m, Blanchâtres à beige clair, à cassure fine ou parfois coquilière, de marnes et de calcaires grumeleux souvent riches en Huítres et Oursins réguliers et de dolomies cristallines verdâtres. Je limite cet intervalle au toit du dernier lit de calcaire fossilifère. Épaisseur: 20 m;
3) le niveau suivant se présente dans la morphologie comme une zone bien litée, de couleur jaunâtre à brune; il s'agit de dolomies verdâtres et grossièrement cristallines vers la base, brunes à jaunes et plus finement cristallines en haut, avec des débris coquiliers abondants, et des moules de Lamellibranches et Gastropodes. Vers la partie moyenne, un banc m'a fourni: *Liopistha (Psilomya) bussoni* Albanesi et *Harpagodes* cf. *desori* (Pictet & Campiche). Ces bancs dolomitiques admettent quelques intercalations d'argiles sableuses et gypseuses et de grès tendres. L'unité se termine sur 5 m par des dolomies bien litées, en bancs réguliers de 1 ou 2 dcm, percées de trous correspondant à la dissolution de fossiles. L'épaisseur de cet intervalle est de 37 m;
4) au-dessus, apparaît une bande d'affleurement, de couleur blanche, avec quelques gros bancs brun-chocolat dont les éboulis parsèment les pentes. L'essentiel est consti
de sables argileux blanchâtres et légèrement verdâtres, contenant à la partie moyenne de grands troncs hématisés, plus rarement silicifiés, et d’argiles sableuses et gypseuses. Dans la moitié inférieure existent encore quelques bancs de dolomies, en général cristallines, à cassure beige, mais patine rousse. Des moules de Lamellibranches et de Gastropodes se voient encore dans certaines de ces dolomies. Le plus élevé de ces bancs dolomitiques, situé donc vers le milieu de l’intervalle, épais de 2 m, constitue un repère très continu dans la région (le « gros banc brun »). Dans la moitié supérieure, les dolomies disparaissent, les éboulis recouvrent les niveaux tendres et des bancs et lentilles gréseuses, à stratifications obliques et kerboub, en émergent. Épaisseur totale: 48 m;

5) sur 34 m réapparaît ensuite une série encadrée par des dolomies jaunes ; à la base, une barre épaisse de 7 m, très visible dans la morphologie, est constituée de bancs de 0,30 à 0,50 m, séparés entre eux par des intercalations grumeleuses jaunes. Au toit c’est sur 2,50 m une dolomie jaune ocre en bancs de 0,50 m. Entre ces deux bancs dolomitiques, alternent des argiles vertes, des grès tendres, avec quelques lentilles induites par un ciment carbonaté et quelques bancs dolomitiques. Au total: 34 m;

6) grès et sables beiges, à passées jaunâtres, grossiers, tendres, avec stratifications obliques et kerboub. La base surtout est riche en os et débris de bois: 10 m;

7) 2 m d’argiles vertes, puis une lacune de visibilité de 14 m;

8) dolomie (2 m), à grains de quartz quelquefois assez gros, puis barre dolomitique à intercalations lumachelliques: c’est la base de l’Apto-Cénomanien.

Les niveaux 1 et 2 représentent l’Oxfordien dont le faciès est le même que celui de Merbah el Asfer. La comparaison avec la coupe de Merbah el Asfer permet de mettre en équivalence le niveau 3 de Bir Miteur (37 m) avec les niveaux 2 et une partie de 3 de Merbah, soit au total une cinquantaine de mètres. Au-dessus, les rapprochements sont moins aisés. Disons simplement que l’épaisseur globale, au-dessus du niveau 3, est de 105 m à Bir Miteur, alors que l’équivalent à Merbah mesure 225 m. Et la plus grande partie de cet amincissement semble bien être d’origine et non imputable à des érosions postérieures au dépôt. Je reviendrai sur cette notion qui est importante pour l’histoire géologique de la région; mais dès maintenant, il faut souligner que les dolomies sont proportionnellement plus développées à Bir Miteur qu’à Merbah et ceci aux dépens des grès: la direction d’amincissement et de biseau-tage qui est, a priori, celle du continent nourricier de la sédimentation n’en est pas pour autant automatiquement la direction d’enrichissement en matériel clastique.

RASS KRERACHEFA. Les coupes offertes par les environs de Rass Krerachafa, à 4 km seulement au Nord de Bir Miteur, montrent une évolution sensible. Les calcaires massifs oxfordiens sont directement surmontés par des dolomies cristallines gris-verdâtre. Les calcaires blancs, en petits bancs, avec passées grumeleuses fossilifères, qui s’intercalaient à cette place encore à Bir Miteur (niveau 2 de la coupe) ont disparu ici. Entre les calcaires massifs oxfordiens et le repère excellent fourni par le « gros banc brun », l’épaisseur de série s’établit ici à 45 m, alors qu’elle était
de 80 m à Bir Miteur: or, dans cette partie du Purbecko-Wealdien, la présence du gros banc brun qui la couronne prouve que l’amincissement est d’origine et ne peut être imputé aux érosions postérieures, spécialement celles que souligne, quelques kilomètres au Nord, la discordance des carbonates du Crétacé moyen. Là encore, parallèlement à cet amincissement, on note un enrichissement relatif en carbonates, aux dépens des sables et des argiles sableuses. Au-dessus du « gros banc brun », sur 20 à 25 m, on observe des sables blanchâtres, à débris et rognons hématisés, avec passées de grès fins, tendres, à petit kerboub, fines stratifications obliques et ripple-marks et intercalations d’argiles feuilletées, parfois gypseuses et sableuses et de dolomies jaunes et rouges. Ces dernières prennent par place une certaine importance au sommet de l’intervalle, constituant une barre épaisse de 7 m. La surface supérieure de cette barre dolomitique qui s’étrode en grands dômes, présente parfois de très beaux ripple-marks.

Au-dessus, reposent 15 à 25 m de grès. La base est très grossière, avec des quartz de 3 à 4 m/m; la disposition lenticulaire avec stratification oblique très fréquente. Mais surtout, ces grès grossiers sont très riches en os, dents, coprolithes, bois, etc., en particulier en restes de Dinosauriens, de Crocodiliens et de Poissons ganoïdes. Au-dessus, l’ensemble de la masse gréseuse présente des stratifications obliques et des passées à kerboub, avec, en outre, quelques intercalations grossières (avec galets ayant jusqu’à 1 dcm) et quelques niveaux hématisés. Les argiles n’existent que sporadiquement, en particulier au sommet de l’intervalle. Un conglomerat dolomitique à grosses Trigonies, bois et débris variés, puis une dolomie gréseuse et lumachellique font le passage à la série carbonatée.

En conclusion, on rappellera que sous un certain banc-repère dont l’existence prouve l’intégralité de la série sous-jacente, des coupes successives du Sud vers le Nord, montrent des épaisseurs de moins en moins fortes, avec simultanément des faciès de plus en plus carbonatés. Une érosion crétacée n’est pas exclue, soit à la base des dolomies, soit peut-être à la base des grès grossiers, dont la situation stratigraphique n’est pas parfaitement claire. Mais le rôle de cette érosion est secondaire; elle n’a fait qu’ajouter ses effets au biseautage stratigraphique et elle est restée, de toutes façons, cantonnée dans le domaine le plus septentrional. De cette disposition, on tirera la conclusion suivante quant à l’histoire géologique du Sud tunisien: à l’époque correspondant aux dépôts du « Purbecko-Wealdien », le domaine septentrional a constitué, comme aux époques antérieures, un domaine moins subsident que la région de
Foum Tatahouine, et d’autant moins subsident que situé plus au Nord, ceci jusqu’au promontoire de Médénine, vraisemblablement émergé. Enfin, par rapport aux autres régions, ce domaine peu subsident a appelé une sédimentation moins gréseuse et plus carbonatée.

Vers le Sud

Les gisements fossilières. Les gisements des coupes d’El Itime et de Darharlet sont situés le long des colonnes lithologiques correspondantes de la Fig. 2. Le premier m’a livré: Cyprina bernensis Leymerie, Trigonarca bussoni Albanesi, Nuculoma planata (Deshayes) et Nucula sp.; le deuxième: Panope gurgitis neocomiensis Leymerie. Ceux de Gour El Hachem n’ont pas pu être localisés avec la même précision, car l’affleurement est complètement isolé au milieu des atténuements. J’en ai ramené: Lithophaga oblonga (d’Orbigny), Astarte cf. amygdala triangul- laris Coquand et Harpagodes cf. desori (Pictet & Campiche).

L’évolution des faciès. Les observations ne peuvent porter que sur la partie supérieure de l’intervalle, le reste étant masqué sous la grande plaine qui sépare les calcaires jurassiques de la falaise crétacée. Les argiles vertes sommitales demeurent pratiquement inchangées; au contraire, les niveaux sous-jacents montrent la disparition des passées dolomitiques et argileuses, fréquentes au Nord et l’envahissement de toute la série par des grès, souvent grossiers, parfois riches en bois, dents, débris d’ossements (vertèbres de Platyspondylus, etc.), galets d’argiles, etc.

Conditions de dépôt.

L’étude paléontologique des Lamellibranches et Gastropodes contenus dans ces couches a montré qu’il s’agissait d’espèces marines, quelque soient les niveaux dolomitiques qui ont livré ces fossiles. Or, cette série a toujours été considérée comme continentale.

En fait, de nombreuses observations plaident en faveur du caractère ou des tendances continentales d’une bonne partie de ces couches. En particulier, l’absence complète de Foraminifères ou du moindre débris d’Echinodermes dans les lavages de sédiments meubles; la fréquence des bois silicifiés et hématisés et la présence de lits de graviers où le bois se mêle aux débris de Tortues, de Poissons (ganoïdes principalement), de Crocodiliens, de Dinosauriens, etc.; l’abondance des stratifications obliques et des passages de faciès qui rendent si différentes des coupes pourtant voisines, en particulier ces grosses lentilles de grès indurés parfois
carbonatés, dont la taille va de quelques mètres à quelques centaines de mètres; chacun de ces caractères ne suffirait pas à établir la nature continentale du milieu de sédimentation, mais leur faisceau fournit une très sérieuse présomption. Or, la concordance parfaite des bancs marins (dolomies à Astartes) et de ces bancs continentaux et le passage très progressif des uns aux autres sont tout à fait remarquables. De plus, l’abondance du gypse — soit diffus dans les argiles, soit comme ciment des grès — prouve la permanence d’influences marines dans ces faciès de dépôts fluviatiles.

Cette alternance, cette intrication de couches marines et continentales et le passage graduel qui s’observe des unes aux autres correspondent au milieu de dépôt habituellement qualifié de « deltaïque ». Toute cette sédimentation semble avoir été gouvernée par le régime hydrodynamique des masses d’eau qui l’alimentaient et par les principaux facteurs qui affectaient ce régime. Les passages latéraux de faciès, lentilles un peu plus gréseuses, un peu plus dolomitiques, lentilles argileuses, résultent de légères différences présentées, ici et là, par le marécage — ou le delta — soit dans la forme du fond (cuvette, haut-fond), soit dans les conditions de circulation des eaux (zone abritée par une levée naturelle, etc.), soit dans le couvert végétal qui peut fonctionner comme piège à sédiment, ou pour influencer le chimisme du milieu de dépôt, etc. Quant aux successions verticales, l’importance et la rapidité des masses d’eau mises en jeu ont conditionné l’importance des décharges qu’elles ont alimentées. On conçoit dès lors qu’une augmentation importance et brutale du régime hydrodynamique, succédant à une période d’étiage, amène, dans un premier temps, les débris du couvert végétal, ses hôtes et ceux du marécage; et dans un deuxième temps, le matériel que ce bios recouvrait, qu’il élaborait ou qu’il protégeait jusqu’alors. En somme, les observations de détail amènent, par une voie directe, à concevoir des épisodes rhélastiques et des épisodes biostasiques; ou peut-être même les deux simultanément, c’est-à-dire le règne en un point de conditions rhélastiques pendant qu’en un autre en fonction des conditions locales, se développaient des conditions biostasiques.

Ces conditions peuvent donc expliquer, jusqu’à un certain point, l’alternance des couches marines et des couches continentales. Sur un pays d’une platitude extrême, sous une tranche d’eau d’épaisseur très faible, on conçoit que l’arrivée de masses d’eaux continentales importantes modifient radicalement un milieu jusqu’alors à tendance marine, dont elle repousse et reporte quasi instantanément les limites à une très grande distance, en même temps que ces eaux continentales laissent le té-
moin constitué par leurs grandes décharges gréseuses. Et, vice versa, l’installation d’un débit d’étiage peut laisser s’instaurer, après une sédimentation argileuse d’origine encore continentale, des conditions marines franches (dolomies à Astartes) sur d’énormes superficies. Transgressions et régressions marines peuvent ainsi s’être opérées sans la moindre déformation d’origine tectonique, sans la moindre variation de la vitesse de subsidence, sans le moindre changement du niveau eustatique.

BIBLIOGRAPHIE SOMMAIRE

Une bibliographie plus complète est donnée dans le travail suivant:

2) ETUDE DES LAMELLIBRANCHES ET GASTÉROPODES MARINS (C. ALBANESI)

Introduction.

Les fossiles étudiés ci-dessous ont été recueillis dans le Crétacé inférieur de l'Extrême-Sud tunisien en 1959-60 par M. Georges Busson, alors chef de travaux de géologie appliquée à l'Université d'Alger.

Les fossiles avaient été envoyés par M. Busson à Mme Carla Rossi Ronchetti, directeur de l'Institut de Paléontologie de l'Université de Milan, qui a bien voulu me charger de les examiner (1).

Ce travail concerne les Lamellibranches et Gastéropodes du Crétacé inférieur. Je les ai examinés avec un intérêt particulier, car il s'agit d'Invertébrés marins, lesquels n'ont jamais été signalés jusqu'à présent dans le Crétacé inférieur de l'Extrême-Sud tunisien. Les auteurs précédents qui s'étaient occupés du Crétacé inférieur de cette région, n'y avaient relevé que la présence de dépôts continentaux (2).

Examen critique des coupes fossilifères.

Les coupes qui ont fourni les fossiles que j'ai examinés sont situées dans l'Extrême-Sud tunisien; je vais les citer ci-dessous, dans l'ordre géographique, de l'Ouest à l'Est et du Nord au Sud.

BIR MITEUR.

Dans le niveau Tu 2312 j'ai déterminé les espèces suivantes:

\[\text{Liopistha (Psilomya) bussoni sp. n.}\]
\[\text{Harpagodes cf. desori (Pictet & Campiche)}\]

La seule espèce déjà connue, *Harpagodes desori* (Pictet & Campiche), est répandue du Valanginien à l'Aptien.

RHOUMRASSÈNE.

Dans le niveau Tu 2331 on a identifié:

\[\text{Lithophaga oblonga (d'Orbigny)}\]

Dans le niveau Tu 2332:

\[\text{Nuculoma planata (Deshayes)}\]

(1) Je tiens à remercier M. Georges Busson de m'avoir donné l'occasion d'effectuer une étude si intéressante, ainsi que Mme Rossi Ronchetti de m'avoir si aimablement conseillée pendant mon travail.

HADDADA.

Dans le niveau Tu 1009 on a déterminé les espèces suivantes:

- *Lithophaga oblonga* (d’Orbigny)
- *Trigonia* sp. aff. *carinata* Agassiz
- *Cyprina bernensis* Leymerie
- *Harpagodes* cf. *desori* (Pictet & Campiche)

Dans le niveau Tu 1037:

- *Freiastarte subcostata* (d’Orbigny)

Lithophaga oblonga (d’Orbigny), *Cyprina bernensis* Leymerie et *Harpagodes desori* (Pictet & Campiche) ont été signalées soit dans le Néocomien, soit dans l’Aptien; *Trigonia carinata* Agassiz a une répartition stratigraphique un peu plus vaste, puisqu’elle a été retrouvée même dans le Cénomanien. *Freiastarte subcostata* (d’Orbigny) est répandue elle aussi du Néocomien à l’Aptien.

MERBAH EL ASFER.

Dans le niveau Tu 810 on a retrouvé:

- *Lithophaga oblonga* (d’Orbigny)

Dans le niveau Tu 838:

- *Nuculoma planata* (Deshayes)

Dans le niveau Tu 839:

- *Astarte sinuata* d’Orbigny
- *Freiastarte subcostata* (d’Orbigny)

Dans le niveau Tu 846:

- *Nucula* (*Pectinulca*) *jaccardi* Pictet & Campiche

La répartition stratigraphique de *Lithophaga oblonga* (d’Orbigny), de *Nuculoma planata* (Deshayes) et de *Freiastarte subcostata* (d’Orbigny) a déjà été indiquée. *Astarte sinuata* d’Orbigny est fréquente surtout dans l’Aptien, mais existe aussi dans le Barrémien. *Nucula* (*Pectinulca*) *jaccardi* Pictet & Campiche n’a été signalée, pour le moment, que dans l’Albien.

EL ITIME.

Dans le niveau Tu 1803 on a trouvé:

- *Cyprina bernensis* Leymerie

Dans le niveau Tu 1806:

- *Trigonarca bussoni* sp. n.
Dans le niveau Tu 1808:

Nuculoma planata (Deshayes)
Nucula sp.

La répartition de *Cyprina bernensis* Leymerie et de *Nuculoma planata* (Deshayes) a déjà été indiquée.

DARHARIET.

Dans le niveau Tu 1819 on a reconnu *Panope gurgitis neocomiensis* (Leymerie), qui est répandue du Néocomien au Cénomanien, mais qui est particulièrement abondante dans le Néocomien et dans l’Aptien.

GOUR EL HACHEM.

Dans le niveau Tu 325 on a signalé:

Lithophaga oblonga (d’Orbigny)
Astarte cf. amygdala triangularis Coquand
Harpagodes cf. desori (Pictet & Campiche)

La répartition de *Lithophaga oblonga* (d’Orbigny) et d’*Harpagodes desori* (Pictet & Campiche) a déjà été indiquée. *Astarte amygdala triangularis* Coquand est une espèce répandue dans l’Aptien.

Composition de la faune.

La faune qui a été examinée comprend environ 120 exemplaires, de taille moyenne et petite; la plupart sont des moules internes en assez mauvais état de conservation. Cette faune ne contenait que des Mollusques, essentiellement des Lamellibranches; seuls trois exemplaires sont des Gastéropodes. Treize espèces ont été déterminées. Je vais les citer ci-dessous, suivant l’ordre systématique proposé par Newell (1965) pour les Lamellibranches et par Wenz (1938) pour les Gastéropodes.

Lamellibranches

Nucula (*Pectinucula) jaccardi* Pictet & Campiche
Nucula sp.
Nuculoma planata (Deshayes)
Trigonarca bussoni sp. n.
Lithophaga oblonga (d’Orbigny)
Trigonia sp. aff. *carinata* Agassiz
Astarte cf. amygdala triangularis Coquand
Astarte sinuata d’Orbigny
Freiastarte subcostata (d’Orbigny)
Cyprina bernensis Leymerie
Panope gurgitis neocomiensis (Leymerie)
Liopistha (*Psilomya) bussoni sp. n.

Gastéropodes

Harpagodes cf. desori (Pictet & Campiche)

Les 13 espèces que j’ai déterminées ont été groupées en 9 genres,
répartis en 9 familles, dont 8 appartiennent aux Lamellibranches et un aux Gastéropodes.

Les genres qui sont représentés par le plus grand nombre d'espèces sont: Astarte (2 espèces), et Nucula (2 espèces); les autres genres sont tous représentés par une seule espèce chacun.

En ce qui concerne la fréquence des individus dans les différentes espèces, l'espèce la plus fréquente est Trigonarca bussoni sp. n. (40 individus), puis Lithophaga oblonga (30 individus); Cyprina bernensis et Panope gurgitis neocomiensis (15 individus chacune); Nuculoma planata (4); Harpagodes cf. desori (3); Astarte cf. amygdala triangularis et Freiastarte subcostata (2 individus chacune); enfin, Nucula (Pectinucula) jaccardi, Nucula sp., Trigonia sp. aff. carinata, Astarte sinuata, et Liopistha (Psilomya) bussoni sp. n., avec un seul individu chacune.

Comparaison avec quelques faunes contemporaines d'autres régions d'Afrique.

La faune que j'ai examinée peut être naturellement rapprochée des faunes du Crétacé inférieur de la Tunisie Centrale et de celles d'autres régions africaines.

En ce qui concerne la Tunisie Centrale, Pervinquiére (1912) a signalé dans l'Hauterivien de Mhrila 16 espèces, dont 4 (25%) se retrouvent aussi dans l'Extrême-Sud, c'est-à-dire: Nuculoma planata (Deshayes), Trigonia carinata Agassiz, Cyprina bernensis Leymerie, Panope gurgitis neocomiensis (Leymerie).

Les espèces indiquées dans l'Aptien de la même région sont plus nombreuses (51), mais le pourcentage des espèces communes est beaucoup plus faible, car il n'y a que deux espèces citées dans chacune des deux régions: Cyprina bernensis Leymerie et Panope gurgitis neocomiensis (Leymerie).

Mongin (1951) a signalé dans l'Atlas Tunisien Oriental une vingtaine d'espèces néocomiennes, dont une seulement: Panope gurgitis neocomiensis (Leymerie) a été retrouvée dans l'Extrême-Sud.

Gigout (1951) a cité 18 espèces de Lamellibranches néocomiens, recueillies dans la Méséta Marocaine Occidentale; deux d'entre elles se retrouvent dans la faune que j'ai déterminée: Trigonia carinata Agassiz et Panope gurgitis neocomiensis (Leymerie).

Il ressort donc de ces comparaisons que la plupart des espèces qui ont été trouvées dans le Crétacé inférieur de l'Extrême-Sud tunisien représentent des espèces nouvelles, non seulement pour la Tunisie, mais pour toute l'Afrique du Nord. Les espèces signalées pour la première fois
<table>
<thead>
<tr>
<th>Géomammifères</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ailien</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Apien</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Barremien</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Neocomien</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mexique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antérieure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espagne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somalie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigéria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alas Tunisien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisie Centrale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maroc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noms des espèces</th>
<th>Nucula (Pectunculida) jac-cardii Pickett & Campiche</th>
<th>Nucula sp</th>
<th>Nucula planata (Desbays)</th>
<th>Trigomonacta bussoni sp. n.</th>
<th>Lithophaga oblonga (Orbigne)</th>
<th>Trigonia sp. aff. carinata</th>
<th>Agassia</th>
<th>Astérite cf. amygdata triangularis Coquand</th>
<th>Astérite situata d'Orbigny</th>
<th>Preplastreubach batesiae (Orbigne)</th>
<th>Cyprina bernensis</th>
<th>Leymerie</th>
<th>Panope gurgoris Liotista (Pestelmyia) bussoni sp. n.</th>
<th>Harpagodes cf. desori (Pickett & Campiche)</th>
</tr>
</thead>
</table>

Note: The table contains scientific names and species descriptions for various taxa.

Il ne semble pas fondé d'étendre les comparaisons à des faunes extra-africaines, à cause du nombre insuffisant d'espèces qui constituent la faune de l'Extrême-Sud tunisien. On a donc décidé de grouper dans un tableau d'ensemble les données obtenues, afin d'avoir une vue d'ensemble de la répartition géographique et stratigraphique des espèces qui ont été retrouvées dans l'Extrême-Sud tunisien.

Conclusions.

La faune du Crétacé inférieur de l'Extrême-Sud tunisien se compose d'un petit nombre de Lamellibranches et de Gastéropodes dont la répartition stratigraphique embrasse, le plus souvent, un intervalle qui va du Néocomien à l'Aptien; font exception deux espèces qui dépassent cet intervalle, c'est-à-dire: *Nucula (Pectinucula) jacciardi* Pictet & Campiche, qui jusqu'à présent a été retrouvée seulement une fois dans l'Albien et *Panope gurgitis neocomiensis* (Leymerie), signalée du Néocomien au Cénomanien.

Astarte amygdala triangularis Coquand n'est présente que dans l'Aptien, toutefois nos exemplaires se rapprochent de cette forme d'une manière douteuse, tandis que *Astarte sinuata* d'Orbigny, tout en étant répandue dans l'Aptien, a été signalée même dans le Barrémien.

On peut ainsi conclure que la faune étudiée ne peut apporter d'arguments très sûrs pour dater les niveaux qui l'ont fournie: cela est dû au fait qu'elle présente assez peu d'espèces et n'en contient aucune qui soit particulièrement caractéristique d'un étage ou d'un autre.

Comme je l'ai dit ci-dessus, la plupart de ces espèces ont une répartition stratigraphique assez vaste; celles qui ont une répartition plus limitée sont très peu nombreuses et n'ont pas toujours été identifiées avec certitude.

Avec toutes les réserves dues à la pauvreté du matériel et de la faune il me semble que les couches fossilières peuvent être attribuées aux étages les plus anciens du Crétacé inférieur et peut-être au Néocomien en particulier, car c'est dans cet étage que la plupart des formes identifiées sont surtout répandues.
Descriptions paléontologiques

MOLLUSCA

Classe BIVALVIA

Sous-classe PALAEOTAXODONTA

Ordre NUCULOIDA

Superfamille Nuculacea

Famille Nuculidae Gray, 1824

Genre Nucula Lamarck, 1799

Sous-genre Pectinucula Quenstedt, 1930

Nucula (Pectinucula) jaccardi Pictet & Campiche, 1864-67

Pl. 50, fig. 1

1864-67 *Nucula jaccardi* Pictet & Campiche, p. 415, pl. 129, fig. 14 a-c.

Le seul exemplaire que j'ai examiné est un moule interne de valve droite, assez inéquilière, de forme triangulaire, de hauteur presque égale à la longueur; assez renflée. Bord antérieur oblique et allongé, bord postérieur beaucoup plus court, un peu creux au-dessous du crochet et tronqué postérieurement. Les deux bords se prolongent en une courbe régulière sur le bord ventral, peu curviligne. Crochet renflé opisthogyre, pas très pointu, placé aux 2/3 à peu près de la longueur totale à partir du côté postérieur. Surface lisse. Les caractères internes ne sont pas visibles.

Dimensions (en mm):

- longueur, 19,1
- hauteur, 18

Remarques. Pictet et Campiche (1864-67) comparent leur espèce avec *Nucula pectinata* Sowerby, avec laquelle elle montre de remarquables affinités, surtout en ce qui concerne l'ornementation. *Nucula pectinata* a été choisie par Quenstedt en 1930 comme espèce-type de son sous-genre *Pectinucula*. Ce sous-genre a été accepté par Schenck (1934) dans la classification des *Nuculidae*, aussi bien que dans la classification plus récente de Van de Poel (1955). Par conséquent étant donné la grande analogie existant entre *Nucula jaccardi* Pictet & Campiche et *Nucula pectinata* Sowerby, je pense qu'il faut rapporter l'espèce examinée au sous-genre *Pectinucula*.

Répartition stratigraphique. *N. (Pectinucula) jaccardi* Pictet & Campiche n'a été signalée jusqu'à présent que dans l'Albien de Sainte-Croix.

Gisement. Merbah el Asfer (Tu 846).
Nucula sp.

Pl. 50, fig. 2a, b

Une seule valve gauche, constituant un moule interne, de dimensions assez réduites. Coquille inéquilatérale, de forme triangulaire, plus longue que haute (rapport hauteur/longueur = 0,75), assez renflée.

Bord antérieur beaucoup plus allongé que le bord postérieur, très oblique et raccordé au bord ventral par un arc étroit. Bord postérieur très court, tronqué, formant une assez large courbure avec le bord ventral.

Crochet pas très pointu, mais nettement infléchi vers la région postérieure; situé à 1/5 environ de la longueur totale de la coquille.

Surface presque totalement lisse, à l’exception de quelques stries d’accroissement à peine tracées.

Dimensions (en mm):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur</td>
<td>21,4</td>
</tr>
<tr>
<td>hauteur</td>
<td>16,3</td>
</tr>
</tbody>
</table>

Rapports et différences. L’exemplaire étudié présente quelques analogies avec Nucula simplex Deshayes, figurée par d’Orbigny (1843-47) dans le Néocomien de France, surtout en ce qui concerne la forme triangulaire et l’épaisseur de la coquille; les crochets, au contraire, sont moins recourbés.

L’exemplaire en question ressemble aussi à N. (Pectinucula) jacardi Pictet & Campiche, 1864-67; mais cette dernière espèce, tout en ayant une forme triangulaire, est moins renflée; en outre, sa hauteur est presque égale à sa longueur.

Ne disposant que d’une valve gauche représentée par un moule interne, je ne puis pas préciser si l’exemplaire étudié appartient à une espèce nouvelle.

Gissement. El Itime (Tu 1808).

Genre Nuculoma Cossmann, 1907

Nuculoma planata (Deshayes, 1842)

Pl. 50, fig. 3-5

1842 Nucula planata Deshayes in Leymerie, p. 7, pl. 9, fig. 3, 4.
1844 Nucula planata - d’Orbigny, p. 163, pl. 300, fig. 1-5.
1844 Nucula cornuelitana d’Orbigny, p. 165, pl. 300, fig. 6-10.
1861 Nucula cornuelitana - de Lorig, p. 84, pl. 10, fig. 6.
1866 Nucula planata - Pictet & Campiche, p. 404, pl. 129, fig. 7, 8.
1912 *Nucula planata* - Pervinquière, p. 92.
1921 *Nucula planata* - Gillet, p. 11.
1922 *Nucula planata cornueliana* - Gillet, p. 11.
1924 *Nucula planata* - Gillet, p. 8.
1955 *Nuculoma planata* - Van de Poel, p. 7.
1961 *Nucula (Leionucula) planata* - Casey, p. 605.

Quatre exemplaires bivalves ont été étudiés, dont un ouvert, plus une valve gauche, tous représentés par des moules internes; en outre, deux petites empreintes de valves droites. Coquille équivalve, fortement inéquilatérale, de forme ovale ou subtriangulaire, plus longue que haute: rapport hauteur/longueur = 0,78; médiocrement renflée et, antérieurement, presque allongée.

Bord antérieur beaucoup plus long que le bord postérieur, déclive et presque rectiligne, raccordé en arc étroit au bord ventral. Bord postérieur généralement très court, nettement tronqué, prolongé dans le bord ventral par une courbure assez large. Crochets peu saillants, pas très pointus, opisthogryses, tangents et fortement déplacés dans la région postérieure, placés à 1/5 à peu près de la longueur totale. Sur une des valves, de légères stries d'accroissement sont à peine visibles en quelques endroits.

Dimensions (en mm):

<table>
<thead>
<tr>
<th></th>
<th>longueur</th>
<th>hauteur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20,3</td>
<td>15,6</td>
</tr>
<tr>
<td></td>
<td>23,5</td>
<td>17,3</td>
</tr>
</tbody>
</table>

Répartition stratigraphique. *Nuculoma planata* (Deshayes) est répandue du Néocomien à l'Aptien en France, en Suisse et en Angleterre. En outre, elle a été signalée dans l'Hauterivien de Mrhila (Tunisie Centrale).

Gisements. Merbah el Asfer (Tu 838), El Itime (Tu 1808) et Rhoum-rassène (Tu 2332).
Sous-classe **Pteriomorpha**
Ordre **Arcoidea**
Superfamille **Arcacea**
Famille **Cucullaeidae** Stewart, 1930
Genre **Trigonarca** Conrad, 1863

Trigonarca bussoni sp. n.
Pl. 50, fig. 6-10; Pl. 51, fig. 1-6

Une quarantaine d’exemplaires bivalves ont été étudiés, de taille petite à moyenne, pas très bien conservés, consistant en des moules internes.

Ils ne peuvent se rapporter à aucune des espèces crétacées de *Trigonarca* jusqu’à maintenant créées, aussi peut-on penser qu’il s’agit d’une espèce nouvelle.

Holotype (Pl. 50, fig. 6 a, b). Coquille équivalve, un peu inéquilatérale, de dimensions moyennes, de forme trapézoïdale, assez aplatie, plus longue que large; hauteur = 70 % environ de la longueur. Bord antérieur infléchi, avec un large rayon de courbure, se prolongeant dans le bord ventral par une courbe régulière; bord postéro-dorsal droit et oblique, formant un angle obtus avec le postérieur qui est peu arrondi et court. Ce dernier se raccorde au bord ventral sous un angle presque droit. Bord ventral long, peu curviligne.

Crochets pas très grands, placés dans le tiers antérieur de la longueur totale.

Surface dorsale avec carène postérieure à peine tracée qui, partant du crochet, délimite une courte surface postérieure. Dans la région postéro-ventrale de la valve droite, petites traces de petites côtes concentriques à peine visibles.

Paratypes (Pl. 50, fig. 7-10; Pl. 51, fig. 1-6). Les nombreux paratypes examinés, dont je donnerai ci-dessous les dimensions et les rapports, se rapportent généralement à l’holotype quant à leur forme générale, leurs dimensions, l’allure et la position des crochets, et même les rapports des dimensions; en fait, le rapport hauteur/longueur est compris entre 75 % et 87 %, variant en moyenne entre 80 % et 85 %. Le rapport épaisseur/longueur varie entre 42 % et 54 %, étant, en moyenne, compris entre 45 % et 46 %.

D’autres paratypes montrent une légère variation dans la forme générale de la coquille, qui, de trapézoïdale qu’elle est dans l’holotype, est, ici, plus triangulaire ou quelque fois même subcarrée.
DIMENSIONS (en mm):

<table>
<thead>
<tr>
<th>Holotype</th>
<th>longueur</th>
<th>hauteur (73%)</th>
<th>épaisseur (43%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33,4</td>
<td>25,4</td>
<td></td>
<td>14,4</td>
</tr>
</tbody>
</table>

Paratypes:

1	22,5	19,4 (86%)	11,6 (51%)
2	22,6	19,7 (87%)	10,4 (46%)
3	25,5	20 (78%)	11,8 (46%)
4	27	21,7 (80%)	14,6 (54%)
5	27,4	20,8 (75%)	11,6 (42%)
6	27,5	21,8 (79%)	12,2 (44%)
7	29,1	24,4 (83%)	14 (48%)
8	29,2	23,4 (87%)	14,4 (49%)
9	30	23,6 (78%)	12,8 (42%)
10	32,3	25,2 (78%)	14,5 (44%)

Derivatio nominis. De M. Georges Busson qui a recueilli le matériel.

Locus typicus. El Itime (Tu 1806), Extrême-Sud tunisien.

Ordre MYTILOIDA
Superfamille *Mytilacea*
Famille *Mytilidae* Rafinesque, 1815
Genre *Lithophaga* Bolten Röding, 1798

Lithophaga oblonga (d'Orbigny, 1844)
Pl. 51, fig. 7-9

1844 Lithodomus oblongus d'Orbigny, p. 289, pl. 344, fig. 4-6.
1858 Lithodomus oblongus - Pictet & Renevier, p. 117, pl. 16, fig. 4 a, b.
1864-67 Lithodomus oblongus - Pictet & Campiche, p. 515, pl. 134, fig. 3-6.
1922 Lithodomus oblongus - Gillet, p. 43.

Une trentaine d'exemplaires bivalves étudiés, dans un état de conservation à peine passable, de dimensions variables, de petites à assez grandes; la plupart sont représentés par des moules internes.
Coquille équivalve, fortement inéquilatérale, allongée transversalement, de forme triangulaire, assez renflée dans la portion moyenne; crochets prosogyres, placés près de l'extrémité antérieure, peu marqués, à peine recourbé en avant et pointus. Bord antérieur très court, tronqué et raccordé au bord ventral en formant un angle obtus. Bord dorsal très long, à peine convexe, se raccordant au postérieur en une courbe uniforme; le bord postérieur se raccorde au ventral en un arc régulier. Une carène arrondie, assez bien marquée dans la portion moyenne de la coquille part des crochets, en tranchant diagonalement les deux valves, et se terminant à l'extrémité postéro-ventrale.

Sur la surface d'un des exemplaires, de fines stries d'accroissement sont assez bien visibles. Empreinte palléale assez éloignée du bord; empreinte musculaire postérieure assez grande, arrondie.

DIMENSIONS (en mm):

<table>
<thead>
<tr>
<th></th>
<th>28,6</th>
<th>40</th>
<th>38</th>
<th>50</th>
<th>58,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hauteur</td>
<td>12,8</td>
<td>17,5</td>
<td>17,3</td>
<td>22,4</td>
<td>24,8</td>
</tr>
<tr>
<td>épaisseur</td>
<td>7,3</td>
<td>11,1</td>
<td>7</td>
<td>12,8</td>
<td>14,3</td>
</tr>
</tbody>
</table>

REMARQUES. Piveteau (1953) utilise le nom générique *Lithodomus* Cuvier, 1817, qui, d'après le Traité Russe de Paléontologie (Osnovy Paleontologii), est un synonyme plus récent de *Lithophaga* Bolten Röding, 1798. Suivant la règle de priorité, nous adoptons donc le nom générique de Bolten, déjà adopté par Casey (1961).

GISEMENTS. Haddada (Tu 1009), Rhoumrasène (Tu 2331), Merbah el Asfer (Tu 810), Gour El Hachem (Tu 325).

Sous-classe PALAEOHETERODONTA

Ordre TRIGONIOIDEA

Superfamille *Trigoniacea*

Famille *Trigoniiidae* Lamarck, 1819

Genre *Trigonia* Bruguère, 1789

Trigonia sp. aff. *carinata* Agassiz, 1840

Pl. 51, fig. 10 a, b

1840 *Trigonia carinata* Agassiz, p. 43, pl. 7, fig. 7-10.
1842 *Trigonia harpa* Deshayes in Leymerie, p. 8, pl. 9, fig. 7 a, b.
1844 *Trigonia carinata* - d'Orbigny, p. 132, pl. 286, fig. 1-7.
1858 *Trigonia carinata* - Pictet & Renevier, p. 101.
Le seul exemplaire étudié doit être attribué à l'espèce d'Agassiz avec quelque réserve cependant, car il ne s'agit que d'une empreinte de valve droite.

Valve un peu inéquilatérale, triangulaire, un peu plus longue que haute; son bord antérieur, à ce qu'il semble, devait être arrondi; bord postérieur assez allongé et tronqué. Le crochet opistogyre devait être assez pointu et submédian. Région principale medio-antérieure de la valve ornée de 14 côtes concentriques, étroites mais bien marquées et régulièrement espacées; elles s'interrompent à la hauteur d'un sillon radial assez large et creux qui part du crochet et précède la carène marginale. Carène marginale bien prononcée ayant une allure arquée, avec concavité tournée vers le haut. Un deuxième sillon est situé derrière la carène, mais celui-ci est moins net et moins profond que le premier; on voit ensuite un premier groupe de quatre ou cinq côtes radiales assez fines, mais bien marquées, séparées par une dépression d'un deuxième groupe de côtes qui n'est pas complètement visible sur l'exemplaire étudié. La région postérieure est, en outre, couverte, à partir de la carène marginale, par de fines petites côtes transversales qui croisent les côtes radiales en formant une sorte de réseau.

Dimensions (en mm):

longueur, 19,3
hauteur, 21,8

RÉPARTITION STRATIGRAPHIQUE. T. carinata Agassiz est très répandue dans le Néocomien de France et de Suisse; elle a été signalée aussi dans l'Aptien de ces pays. En Angleterre elle a été signalée dans le Néocomien, dans l'Aptien et dans le Cénomanien; au Maroc, dans l'Hauterivien inférieur et dans le Cénomanien; enfin en Tunisie Centrale, dans l'Hauterivien.

GISEMENT. Haddada (Tu 1009).

Sous-classe HETEROdonta
Ordre Veneroida
Sous-ordre Lucinina
Superfamille Crassatellacea
Famille Astartidae d'Orbigny, 1844
Genre *Astarte* Sowerby, 1818

Astarte cf. *amygdala triangularis* Coquand, 1866

Pl. 52, fig. 1 a, b

1866 *Astarte amygdala* Coquand, p. 316, pl. 16, fig. 1, 2.
1866 *Astarte triangularis* Coquand, p. 317, pl. 15, fig. 7, 8.
1946-47 *Astarte amygdala triangularis* - Bataller, p. 22 (*cum syn.*).

Un exemplaire bivalve et une valve droite, tous deux de taille moyenne, assez bien conservés, représentés par des moules internes; ils peuvent bien se rapprocher, à quelques réserves, près de la forme de Coquand.

Coquille à forme triangulaire, équivalve, un peu inéquilatérale, plus longue que haute: rapport hauteur/longueur = 0,81, assez renflée en correspondance de la région umbonale. Bord antéro-dorsal court, à peine creusé au dessous des crochets et raccordé par une courbe régulière et assez large, au bord antérieur qui passe insensiblement au bord ventral; bord postéro-dorsal oblique et allongé, tronqué postérieurement et se prolongeant par le bord ventral en formant un angle presque droit.

Crochets assez saillants, mais pas très gros, recourbés en avant et non contigus. Sur la surface est visible une trace très faible de petites côtes concentriques fines et granuleuses.

Dimensions (en mm):

- longueur, 30,2
- hauteur, 24,6
- épaisseur, 16,5

Remarques. L'espèce étudiée se rapproche assez bien de *Astarte triangularis*, figurée par Coquand, aussi bien par les rapports des dimensions, que par la position du crochet; toutefois, elle semble représenter une forme intermédiaire entre cette dernière et *A. amygdala*, celle-ci aussi de Coquand, de laquelle elle se distingue par la forme moins allongée de la coquille et par la position moins antérieure du crochet. Il faut, encore, remarquer que *A. triangularis* a été considérée par Bataller (1946-47) comme une variété de *A. amygdala*.

Répartition stratigraphique. *A. amygdala triangularis* Coquand est une espèce répandue dans l'Aptien d'Espagne.

Gisement. Gour El Hachem (Tu 325).

Astarte sinuata d'Orbigny, 1844

Pl. 52, fig. 2

1844 *Astarte sinuata* d'Orbigny, p. 69, pl. 264, fig. 1-3.
1855 *Astarte sinuata* - Pictet & Renevier, p. 89, pl. 10, fig. 3 a, b.
1921 *Astarte sinuata* - Gillet, p. 13, pl. 1, fig. 13, 14.
1924 *Astarte sinuata* - Gillet, p. 122.

Le seul exemplaire examiné est représenté par une petite empreinte de valve droite. Valve inéquilière, subcarrée, arrondie antérieurement, tronquée postérieurement, un peu plus longue que haute, comprimée. Dans la région postérieure, aux 2/3 environ de la longueur totale, on peut voir un sillon radial assez marqué, qui part du crochet et se dirige avec une allure concave vers la région dorsale, jusqu’au raccord postéro-ventral, en délimitant une sorte d’aile postérieure un peu convexe. Crochet peu marqué, pointu. Surface ornée d’une vingtaine de petites côtes concentriques équidistantes et rapprochées, un peu granuleuses, qui se poursuivent sur l’aile postérieure, où elles sont moins marquées.

Dimensions (en mm):
- longueur: 11,5
- hauteur: 9,7

Répartition stratigraphique. *A. sinuata* d’Orbigny a été signalée dans l’Aptien français, anglais et suisse. En France elle a même été signalée dans le Barrémien.

Gisement. Merbah el Asfer (Tu 839).

Genre *Freiastarte* Chavan, 1952

Freiastarte subcostata (d’Orbigny, 1844)

1842 *Astarte laticosta* Deshayes in Leymerie, p. 4, pl. 4, fig. 4, 5.
1844 *Astarte striato-costata* d’Orbigny, p. 64, pl. 262, fig. 7-9.
1858 *Astarte laticosta* - Pictet & Renevier, p. 88, pl. 10, fig. 2 a-d.
1906 *Astarte subcostata* - Woods, p. 109, pl. 14. fig. 29-36; pl. 15, fig. 1, 2.
1921 *Astarte subcostata* - Gillet, p. 13, pl. 1, fig. 11, 12.
1922 *Astarte subcostata* - Gillet, p. 18.
1924 *Astarte subcostata* - Gillet, p. 56.
1948 *Astarte subcostata* - Tavani, p. 126, pl. 7, fig. 2, 3.
1956 *Astarte subcostata* - Alencaster De Cserna, p. 15, pl. 3, fig. 3.

Deux petites valves respectivement droite et gauche et une empreinte de valve gauche, en assez bon état de conservation. Coquille un peu inéquilière, subtriangulaire, un peu plus longue que haute, à peine renflée.

Bord postérieur oblique et allongé, raccordé, avec un angle obtus, au bord ventral; bord antérieur plus court, creux au-dessous des crochets, tronqué antérieurement, formant une courbure assez large avec le bord ventral.

Crochet prosogyre, pointu, placé aux 2/3 environ de la longueur totale.
Surface ornée approximativement d'une douzaine de côtes concentriques bien marquées, ressemblant un peu à des bandes, régulièrement espacées, entre lesquelles sont visibles de fines stries parallèles.

Dimensions (en mm):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur,</td>
<td>11 15,7</td>
</tr>
<tr>
<td>hauteur,</td>
<td>10 14,7</td>
</tr>
</tbody>
</table>

Gisements. Merbah el Asfer (Tu 839), Haddada (Tu 1037).

Sous-ordre Arcticina

Superfamille Arcticacea

Famille Arcticidae Newton, 1891 (Woodward, 1854)

Genre Cyprina Lamarck, 1812

Cyprina bernensis Leymerie, 1842

Pl. 52, fig. 4-6

1842 *Cyprina ? bernensis* Leymerie, p. 5, pl. 5, fig. 6 a, b.
1844 *Cyprina rostrata* - d'Orbigny, p. 98, pl. 271, fig. 1-5.
1861 *Cyprina bernensis* - de Loriol, p. 76, pl. 9, fig. 8 a, b.
1865 *Cyprina bernensis* - Pictet & Campiche, p. 212, pl. 113, fig. 1, 2.
1912 *Cyprina bernensis* - Pervinquiére, p. 222.
1922 *Cyprina bernensis* - Gillet, p. 28, pl. 4, fig. 2-4.
1924 *Cyprina bernensis* - Gillet, p. 127.

Une quinzaine d'exemplaires examinés, de dimensions variables, de petites à moyennes, assez bien conservés, consistant en des moules internes, presque tous bivalves.

Coquille équivalve, un peu inéquilatérale, très renflée, de forme trapézoïdale à subcarrée, un peu plus longue que haute; hauteur, mesurée perpendiculairement à la longueur, = 90 % environ de la longueur. Convexité assez marquée, atteignant le maximum dans la région médio-umbonale, régulièrement dégradant vers les bords.

Bord antéro-dorsal court et creux au-dessous du crochet, raccordé sous un angle presque droit au bord antérieur qui est long et peu arrondi, presque droit, passant au bord ventral par une courbe régulière. Bord postéro-dorsal long, droit, très oblique, raccordé sous un angle obtus au postérieur qui est subvertical et forme un angle presqu'obtus avec le bord ventral. Bord ventral subdroit. Région umbonale renflée et assez bien
développée; crochets proches mais non contigus, prosogyres, robustes, ronds et recourbés, placés à peu près à mi-longueur de la coquille. Surface lisse, couverte de fines stries d’accroissement qui sont visibles seulement dans quelques-uns des exemplaires examinés.

Dimensions (en mm):

<table>
<thead>
<tr>
<th></th>
<th>37</th>
<th>29,7</th>
<th>26,5</th>
<th>29,2</th>
<th>32,8</th>
<th>28,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hauteur,</td>
<td>32,5</td>
<td>27</td>
<td>24,7</td>
<td>16,2</td>
<td>31,4</td>
<td>26,3</td>
</tr>
<tr>
<td>épaisseur,</td>
<td>21,7</td>
<td>19,7</td>
<td>16,4</td>
<td>18,8</td>
<td>20,7</td>
<td>17,3</td>
</tr>
</tbody>
</table>

Remarques. Abbass (1962) illustre *Cyprina rostrata* Fitton, plaçant en synonymie *C. rostrata* d'Orbigny. D'après ce que dit de Loriol (1861), d'Orbigny (1843-47) avait rapporté son espèce à celle de Fitton (1836) et l'avait décrit sous ce nom. Plus tard le même auteur (d'Orbigny, 1850), rapprocha son espèce de *C. bernensis*, dont *C. rostrata*, sec. d'Orbigny, devenait synonyme. L'espèce anglaise était donc, d'après d'Orbigny, différente de la sienne.

C. bernensis Leymerie pourrait être attribuée au genre *Proveniella* Casey, 1952; toutefois, je ne possède pas assez d'éléments pour étayer une détermination, puisque je ne dispose que de moules internes bivalves où aucune trace de l'appareil cardinal n'est conservée.

Répartition stratigraphique. *C. bernensis* Leymerie a été jusqu'à présent signalée dans le Néocomien et dans l'Aptien de la France centro-occidentale, de Suisse, d'Angleterre, du Caucase et de la Crimée. Elle a, en outre, été retrouvée dans l'Hauterivien et dans l'Aptien de Tunisie Centrale.

Gisements. Haddada (Tu 1009), El Itime (Tu 1803).

Ordre MYOIDA

Sous-ordre MYINA

Superfamille Hyatellacea

Famille Hyatellidae Davies, 1935

Genre Panope Ménard de la Groye, 1807

Panope gurgitis neocomiensis (Leymerie, 1842)

Pl. 52, fig. 7, 8

1842 *Pholadomya neocomiensis* Leymerie, p. 3, pl. 3, fig. 4 a, b.

1909 *Panopea gurgitis* - Woods, p. 222, pl. 35, fig. 9-14; pl. 36, fig. 1-8 (*cum syn.*).

1912 *Panopea plicata* - Pervinquière, p. 284, pl. 21, fig. 1-4 (*cum syn.*).

1921 *Panopea plicata* - Gillet, p. 20.

1922 *Panopea plicata* - Gillet, p. 39, pl. 4, fig. 5.

1924 *Panopea plicata* - Gillet, p. 142, fig. 89.

1948 *Panopea plicata* - Tavani, p. 145, pl. 10, fig. 6.

1949 *Panopea plicata* - Tavani, p. 9.
1951 Panopea gurtitis neocomiensis - Mongin, p. 21, fig. 1, 2.
1951 Panopea gurtitis - Gigout, p. 353.
1956 Panopea neocomiensis - Alencaster De Cserna, p. 19, pl. 3, fig. 5.
1957 Panopea cf. gurtitis - Reymont, p. 49 (cum syn.).

Une quinzaine d'exemplaires bivalves examinés, de petite taille, dans un état de conservation à peine passable, représentés par des moules internes.

Coquille équivalve, pas très inéquilatérale, de forme sub-elliptique, beaucoup plus longue que haute; rapport hauteur/longueur = 0,66; renflée antérieurement, comprimée, un peu béante dans la région postérieure qui est assez allongée.

Bord postéro-dorsal un peu creux, allongé et un peu oblique; bord postérieur tronqué et presque vertical; bord antéro-dorsal plus court et plus oblique, se prolongeant en une courbe régulière et assez large avec le bord antérieur, qui passe insensiblement au bord ventral qui est régulièrement curviligne.

Crochets prosogyres, petits et pointus, un peu déplacés vers la région antérieure.

Quelques-uns des exemplaires montrent de faibles traces d'une côte qui, partant du crochet, se dirige vers la région antérieure de la coquille; d'autres montrent de faibles stries d'accroissement.

Dimensions (en mm):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur</td>
<td>23</td>
</tr>
<tr>
<td>hauteur</td>
<td>15</td>
</tr>
<tr>
<td>épaisseur</td>
<td>8,3</td>
</tr>
</tbody>
</table>

Répartition stratigraphique. P. gurtitis neocomiensis (Leymerie) a été signalée dans le Néocomien et dans le Barrémien de France, dans le Néocomien et dans l'Aptien de Suisse, et dans l'Aptien et le Cénomanien d'Angleterre. En outre, elle a été signalée dans l'Hauterivien et l'Aptien de Tunisie Centrale, dans le Valanginien du Maroc, dans l'Albien de Madagascar et de Nigéria. Enfin, elle a été aussi signalée dans l'Aptien du Mexique et de Somalie et dans le Barrémien de Migiurtinia.

Gisement. Darharriet (Tu 1819).

Sous-classe ANOMALODESMATA
Ordre POROMYIDA
Superfamille Poromyacea
Famille Poromyidae Dall, 1886
Genre *Liopistha* Meek, 1876
Sous-genre *Psilomya* Meek, 1876

Liopistha (Psilomya) bussoni sp. n.

Pl. 53, fig. 1 a-c

Un seul exemplaire bivalve (holotype Pl. 53, fig. 1 a-c), de grandes dimensions, dans un assez mauvais état de conservation. Il ne se rapporte à aucune des espèces crétacées de *Liopistha* qui sont connues jusqu'à présent; ainsi l'on peut penser qu'il s'agit d'une espèce nouvelle.

Coquille inéquilatérale, à valve gauche très déformée, assez renflée; contour vaguement rhomboïdale; incomplète en correspondance du bord postérieur; plus longue que haute.

Côté antérieur assez court et arrondi; côté postérieur plus développé, avec bord dorsal subdroit et déclive à partir du crochet.

Crochets très renflés, ronds et saillants, avec sommets terminaux recourbés en avant; placés à 1/3 à peu près de la longueur du côté antérieur. Surface de la valve très convexe, montrant une plus forte convexité le long de la ligne umbo-postéro-ventrale et le long de l’arc qui joint le crochet à l’angle antéro-ventral.

Ornementation constituée par des côtes excentriques peu marquées, régulières, partant de l’angle antéro-dorsal près de la base des crochets et se dirigeant transversalement et très obliquement vers les régions centrale et postérieure, où elles se terminent contre les bords.

Tandis que dans la région medio-antérieure, les côtes ont une allure rectiligne et rencontrent le bord ventral en formant un angle fort obtus, dans la région postérieure elles montrent une tendance à se recourber en arrière, et cela cause une sensible réduction de l’angle d’intersection.

Dimensions (en mm):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur</td>
<td>58</td>
</tr>
<tr>
<td>hauteur</td>
<td>61</td>
</tr>
</tbody>
</table>

Remarques. L’individu étudié se rapporte aux formes attribuées au sous-genre *Psilomya* Meek, 1876, à cause de l’allure des bords postéro-ventral et ventral, et des rapports des dimensions (longueur). Selon Dar tevelle et Freneix (1957, p. 221) ce sous-genre est présent dans les plus anciens niveaux du Crétacé, et il est répandu surtout dans le Cénomanien; cela peut confirmer l’attribution que l’on a donnée à ce sous-genre.

Rapports et différences. L’espèce examinée présente certaines affinités avec quelques-unes des formes du Crétacé d’Europe et d’Afrique. *Pholadomya ligeriensis* d’Orbigny, 1844 du Turonien de France se rapproche de l’exemplaire étudié, par la forme arrondie et renflée de la
coquille, mais elle s'en distingue par l'ornementation qui consiste en côtes concentriques régulières ayant une allure parallèle aux bords. *Liopista (Psilomya) gigantea* (Sowerby, 1818) du Cénomannien anglais et de l'Aptien de la Tunisie Centrale a une coquille bien plus allongée postérieurement, et moins renflée; les côtes concentriques ne sont présentes que sur le côté dorsal de la coquille, tandis que près du bord ventral on n'observe que des granulosités. *Liopista (Psilomya) alta* (Roemer, 1852) du Cénomannien de la Tunisie et du Texas est, elle aussi, très globuleuse; mais elle se distingue par sa hauteur qui dépasse de beaucoup sa longueur.

Derivatio nominis. De M. Georges Busson qui a recueilli le matériel.
Stratum typicum. Dolomies à Astartes. Crétacé inférieur.
Locus typicus. Bir Miteur (Tu 2312), Extrême-Sud tunisien.

Classe Gastropoda
Sous-classe Prosobranchia
Ordre Mesogastropoda
Superfamille Strombacea
Famille Aporrhaidae Adams, 1858
Genre Harpagodes Gill, 1869

Harpagodes cf. *desori* (Pictet & Campiche, 1864)
Pl. 53, fig. 2 a, b

1864 *Pterocera desori* Pictet & Campiche, p. 575, pl. 90, fig. 3, 4.
1948 *Harpagodes desori* - Tavani, p. 85.

Trois exemplaires assez mal conservés, consistant en des moules internes incomplets; l'un d'eux est même complètement dépourvu de spire: on n'a donc pas pu donner une détermination sûre.

Coquille fusiforme, avec spire incomplète, constituée de 3 tours croissant très rapidement en hauteur, mais toujours plus larges que hauts, séparés par des sutures canaliculées. Dernier tour très développé et renflé. A sa surface, on observe les restes de quatre carènes spirales, assez bien marquées, surtout la deuxième à partir de la suture, assez espacées. Ces carènes se prolongent en autant de digitations qui sont presque absentes dans les exemplaires examinés, mais qui devaient être très développées.

Ouverture subrectangulaire, presque aussi haute que le dernier tour;
anguleuse adapicalement, elle s'élargit, puis se rétrécit à nouveau vers l'extrémité abapicale.

DIMENSIONS (en mm):

- hauteur totale, 50,9
- hauteur du dernier tour, 37,7
- diamètre du dernier tour, 39,8
- angle spiral, 66°

RÉPARTITION STRATIGRAPHIQUE. *H. desori* (Pictet & Campiche) a été signalée dans le Valanginien de Sainte-Croix et dans l'Aptien du Mexique et de Somalie.

GISEMENTS. Gour El Hachem (Tu 325), Haddada (Tu 1009), Bir Miteur (Tu 2312).

BIBLIOGRAPHIE

COX L. R. (1952) - Cretaceous and Eocene Fossils from the Gold Coast. *Gold Coast Geol. Surv.*, v. 17, 57 pp., 5 pl., Cardiff.

DE LORIO P. (1861) - Description des animaux invertébrés fossiles contenus dans l'étage Néocomien moyen du Mont Salève. 214 pp., 22 pl., Genève.

RÖMER F. (1852) - Die Kreidebildung von Texas und ihre organische Einschlüsse. 100 pp., 11 pl., Bonn.

SOWERRY J. (1812-1846) - The mineral conchology of Great Britain. 7 v., 648 pl., Londres.

Istituto di Paleontologia dell'Università di Milano,
PLANCHE 50

Fig. 1 - *Nucula* (*Pectinula*) *jaccardi* Pictet & Campiche. Merbah el Asfer (Tu 846). Valve droite; × 1.

Fig. 2 - *Nucula* sp. El Itime (Tu 1808).
 a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 3 - *Nuculoma planata* (Deshayes). El Itime (Tu 1808).
 a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 4 - *Nuculoma planata* (Deshayes). El Itime (Tu 1808). Exemplaire bivalve: vue dorsale; × 1.

Fig. 5 - *Nuculoma planata* (Deshayes). El Itime (Tu 1808). Valve droite; × 1.

Fig. 6 - *Trigonarca bussoni* sp. n. Holotype. El Itime (Tu 1806).
 a, b: respectivement valve droite et vue dorsale; × 1.

Fig. 7 - *Trigonarca bussoni* sp. n. Paratype n. 5. El Itime (Tu 1806).
 a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 8 - *Trigonarca bussoni* sp. n. Paratype n. 4. El Itime (Tu 1806).
 a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 9 - *Trigonarca bussoni* sp. n. Paratype n. 1. El Itime (Tu 1806). Valve gauche; × 1.

Fig. 10 - *Trigonarca bussoni* sp. n. Paratype n. 2. El Itime (Tu 1806).
 a, b: respectivement valve droite et vue dorsale; × 1.
Fig. 1 - *Trigonarca bussoni* sp. n. Paratype n. 10. El Itime (Tu 1806). Valve gauche; $\times 1$.

Fig. 2 - *Trigonarca bussoni* sp. n. Paratype n. 6. El Itime (Tu 1806). Valve gauche; $\times 1$.

Fig. 3 - *Trigonarca bussoni* sp. n. Paratype n. 8. El Itime (Tu 1806). Valve droite; $\times 1$.

Fig. 4 - *Trigonarca bussoni* sp. n. Paratype n. 7. El Itime (Tu 1806). Valve gauche; $\times 1$.

Fig. 5 - *Trigonarca bussoni* sp. n. Paratype n. 3. El Itime (Tu 1806). Valve gauche; $\times 1$.

Fig. 6 - *Trigonarca bussoni* sp. n. Paratype n. 9. El Itime (Tu 1806). Valve droite; $\times 1$.

Fig. 7 - *Lithophaga oblonga* (d'Orbigny). Rhoumrrassène (Tu 2331).
 a, b: respectivement valve gauche et vue dorsale; $\times 1$.

Fig. 8 - *Lithophaga oblonga* (d'Orbigny). Gour El Hachem (Tu 325).
 a, b: respectivement valve gauche et vue dorsale; $\times 1$.

Fig. 9 - *Lithophaga oblonga* (d'Orbigny). Haddada (Tu 1009).
 a, b: respectivement valve gauche et vue dorsale; $\times 1$.

Fig. 10 - *Trigonia* sp. aff. *cärinata* Agassiz. Haddada (Tu 1009).
 a, b: respectivement empreinte externe de la valve droite et moule de la mê- me; $\times 1$.
Fig. 1 - *Astarte cf. amygdaea triangularis* Coquand. Gour El Hachem (Tu 325). a, b: respectivement valve droite et vue dorsale; × 1.

Fig. 2 - *Astarte sinuata* d'Orbigny. Merbah el Asfer (Tu 839). Moule de la valve droite; × 2.

Fig. 3 - *Freiastarte subcostata* (d'Orbigny). Haddada (Tu 1037). a, b: respectivement valve gauche et moule d'une empreinte externe de valve gauche; × 1.

Fig. 4 - *Cyprina bernensis* Leymerie. Haddada (Tu 1009). a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 5 - *Cyprina bernensis* Leymerie. Haddada (Tu 1009). a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 6 - *Cyprina bernensis* Leymerie. Haddada (Tu 1009). a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 7 - *Panope gurgitis neocomiensi* (Leymerie). Darhariet (Tu 1819). a, b: respectivement valve gauche et vue dorsale; × 1.

Fig. 8 - *Panope gurgitis neocomiensi* (Leymerie). Darhariet (Tu 1819). a, b: respectivement, valve gauche et vue dorsale; × 1.
Fig. 1 - *Liopistra (Psilomyia) bussoni* sp. n. Holotype. Bir Miteur (Tu 2312). a-c: respectivement a) valve droite; b) vue antéro-dorsale; c) vue postéro-dorsale; × 1.

Fig. 2 - *Harpagodes cf. desori* (Pictet & Campiche). Bir Miteur (Tu 2312). a, b: respectivement vue orale et vue aborale; × 1.